Do you want to publish a course? Click here

Kerr-Anti-De-Sitter/De-Sitter Black Hole In Perfect Fluid Dark Matter Background

141   0   0.0 ( 0 )
 Added by Zhaoyi Xu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain the Kerr-anti-de-sitter (Kerr-AdS) and Kerr-de-sitter (Kerr-dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman-Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation $g_{rr}=0$, we derive the relation between the perfect fluid dark matter parameter $alpha$ and the cosmological constant $Lambda$ when the cosmological horizon $r_{Lambda}$ exists. For $Lambda=0$, we find that $alpha$ is in the range $0<alpha<2M$ for $alpha>0$ and $-7.18M<alpha<0$ for $alpha<0$. For positive cosmological constant $Lambda$ (Kerr-AdS BH), $alpha_{max}$ decreases if $alpha>0$, and $alpha_{min}$ increases if $alpha<0$. For negative cosmological constant $-Lambda$ (Kerr-dS BH), $alpha_{max}$ increases if $alpha>0$ and $alpha_{min}$ decreases if $alpha<0$; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for $alpha>0$ and $alpha<0$, while decreasing with the increasing $midalphamid$. When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton-Jacobi formalism and find that when $alpha$ is in the above ranges for $Lambda=0$, stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different $alpha$ and the black hole spin $a$. It is asymptotically flat and independent of $alpha$ if $alpha>0$ while is asymptotically flat only when $alpha$ is close to zero if $alpha<0$.



rate research

Read More

Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations between the two horizons, except for the sum of the two horizon entropies. By employing globally effective first law and effective thermodynamic quantities, we obtain the corrected total entropy and find that the region of stable state for kerr-de Sitter is related to the angular velocity parameter $a$, i.e., the region of stable state becomes bigger as the rotating parameters $a$ is increases.
A class of exact solutions of the Einstein-Maxwell equations is presented which describes an accelerating and rotating charged black hole in an asymptotically de Sitter or anti-de Sitter universe. The metric is presented in a new and convenient form in which the meaning of the parameters is clearly identified, and from which the physical properties of the solution can readily be interpreted.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit space for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.
We study the fully nonlinear dynamics of black hole spontaneous scalarizations in Einstein-Maxwell scalar theory with coupling function $f(phi)=e^{-bphi^{2}}$, which can transform usual Reissner-Nordstrom Anti-de Sitter (RN-AdS) black holes into hairy black holes. Fixing the Arnowitt-Deser-Misner mass of the system, the initial scalar perturbation will destroy the original RN-AdS black hole and turn it into a hairy black hole provided that the constant $-b$ in the coupling function and the charge of the original black hole are sufficiently large, while the cosmological constant is small enough. In the scalarization process, we observe that the black hole irreducible mass initially increases exponentially, then it approaches to and finally saturates at a finite value. Choosing stronger coupling and larger black hole charge, we find that the black hole mass exponentially grows earlier and it takes a longer time for a hairy black hole to be developed and stabilized. We further examine phase structure properties in the scalarization process and confirm the observations in the non-linear dynamical study.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compute the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا