Do you want to publish a course? Click here

The immediate environment of an astrophysical black hole

110   0   0.0 ( 0 )
 Added by Ioannis Contopoulos
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In view of the upcoming observations with the Event Horizon Telescope (EHT), we present our thoughts on the immediate environment of an astrophysical black hole. We are concerned that two approximations used in general relativistic magnetohydrodynamic numerical simulations, namely numerical density floors implemented near the base of the black hole jet, and a magnetic field that comes from large distances, may mislead our interpretation of the observations. We predict that three physical processes will manifest themselves in EHT observations, namely dynamic pair formation just above the horizon, electromagnetic energy dissipation along the boundary of the black hole jet, and a region of weak magnetic field separating the black hole jet from the disk wind.



rate research

Read More

The lenticular galaxy ESO 243-49 hosts the ultraluminous X-ray source HLX-1, the best candidate intermediate mass black hole (IMBH) currently known. The environments of IMBHs remain unknown, however the proposed candidates include the nuclei of dwarf galaxies or globular clusters. Evidence at optical wavelengths points at HLX-1 being the remnant of an accreted dwarf galaxy. Here we report the Australia Telescope Compact Array radio observations of HI emission in and around ESO 243-49 searching for signatures of a recent merger event. No HI line emission is detected in ESO 243-49 with a 5$sigma$ upper limit on the HI gas mass of a few $10^8 M_{odot}$. A likely reason for this non-detection is the cluster environment depleting ESO 243-49s HI gas reservoir. The upper limit is consistent with an interpretation of HLX-1 as a dwarf satellite of ESO 243-49, however more sensitive observations are required for a detection. We detect ~$5 times 10^8 M_{odot}$ of HI gas in the peculiar spiral galaxy AM 0108-462, located at a projected distance of ~170 kpc from ESO 243-49. This amount of HI gas is ~10 times less than in spiral galaxies with similar optical and near-infrared properties in the field, strengthening the conclusion that the cluster environment indeed depletes the HI gas reservoir of these two galaxies. Here we also report observations of AM 0108-462 in several optical and near-infrared bands using the Magellan 6.5 m telescopes, and archival X-ray and ultraviolet observations with XMM-Newton and Swift. These data combined with the HI line data suggest it is likely that AM 0108-462 is experiencing a merger event.
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120,M_{odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16},M_{odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521s source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11},{rm Gpc}^{-3},rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.
Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the stars surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures ($T<10^7,$K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the stars electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically $sim 50%$ protons, $sim 30%$ CNO and $sim 20%$ Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data.
Black holes are a common feature of the Universe. They are observed as stellar mass black holes spread throughout galaxies and as supermassive objects in their centres. Observations of stars orbiting close to the centre of our Galaxy provide detailed clear evidence for the presence of a 4 million Solar mass black hole. Gas accreting onto distant supermassive black holes produces the most luminous persistent sources of radiation observed, outshining galaxies as quasars. The energy generated by such displays may even profoundly affect the fate of a galaxy. We briefly review the history of black holes and relativistic astrophysics before exploring the observational evidence for black holes and reviewing current observations including black hole mass and spin. In parallel we outline the general relativistic derivation of the physical properties of black holes relevant to observation. Finally we speculate on future observations and touch on black hole thermodynamics and the extraction of energy from rotating black holes.
We remind that the ring down features observed in the LIGO GWs resulted from trembling of photon spheres (Rp=3M) of newly formed compact objects and not from the trembling of their event horizons (R=2M). Further, the tentative evidences for late time echoes in GWs might be signatures of horizonless compact objects rather than vacuum black holes (BHs). Similarly, even for an ideal BH, the radius of its shadow is R_shad = sqrt{3}Rp is actually the gravitationally lensed shadow of its photon sphere. Accordingly any compact object having R geq R = 3M would generate similar shadow. Thus, no observation has ever detected any event horizon or any exact BH. Also note that the magnetic field embedded in the accreting plasma close to the compact object is expected to have a radial pattern of B sim 1/r while the stronger BHM dipole magnetic field should fall off as B sim 1/r3. Accordingly it has been suggested that one may try to infer the true nature of the so-called astrophysical BHs by studying the radial pattern of the magnetic field in their vicinity. But here we highlight that close to the surface of BHMs, the magnetic field pattern differs significantly from the same for non-relativistic dipoles. In particular, we point out that for ultra-compact BHMs, the polar field is weaker than the equatorial field by an extremely large factor of sim z_s/lnz_s, where z_s>>1 is the surface gravitational redshift. We suggest that by studying the of radial variation as well as significant angular asymmetry of magnetic field structure near the compact object, future observations might differentiate a theoretical black hole from a astrophysical BH mimicker. This study also shows that even if some BHMs would be hypothesized to possess magnetic fields even stronger than that of magnetars, in certain cases, they may effectively behave as atoll type neutron stars possessing extremely low magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا