No Arabic abstract
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120,M_{odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16},M_{odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521s source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11},{rm Gpc}^{-3},rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.
With the black hole mass function (BHMF; assuming an exponential cutoff at a mass of $sim 40,M_odot$) of coalescing binary black hole systems constructed with the events detected in the O1 run of the advanced LIGO/Virgo network, Liang et al.(2017) predicted that the birth of the lightest intermediate mass black holes (LIMBHs; with a final mass of $gtrsim 100,M_odot$) is very likely to be caught by the advanced LIGO/Virgo detectors in their O3 run. The O1 and O2 observation run data, however, strongly favor a cutoff of the BHMF much sharper than the exponential one. In this work we show that a power-law function followed by a sudden drop at $sim 40,M_odot$ by a factor of $sim $a few tens and then a new power-law component extending to $geq 100M_odot$ are consistent with the O1 and O2 observation run data. With this new BHMF, quite a few LIMBH events can be detected in the O3 observation run of advanced LIGO/Virgo. The first LIMBH born in GW190521, an event detected in the early stage of the O3 run of advanced LIGO/Virgo network, provides additional motivation for our hypothesis.
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of $85^{+21}_{-14} M_{odot}$ and $66^{+17}_{-18} M_{odot}$ (90 % credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, and has only a 0.32 % probability of being below $65 M_{odot}$. We calculate the mass of the remnant to be $142^{+28}_{-16} M_{odot}$, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is $5.3^{+2.4}_{-2.6}$ Gpc, corresponding to a redshift of $0.82^{+0.28}_{-0.34}$. The inferred rate of mergers similar to GW190521 is $0.13^{+0.30}_{-0.11},mathrm{Gpc}^{-3},mathrm{yr}^{-1}$.
The LIGO/Virgo Consortium (LVC) released a preliminary announcement of a candidate gravitational wave signal, S190426c, that could have arisen from a black hole-neutron star merger. As the first such candidate system, its properties such as masses and spin are of great interest. Although LVC policy prohibits disclosure of these properties in preliminary announcements, LVC does release the estimated probabilities that this system is in specific categories, such as binary neutron star, binary black hole and black hole-neutron star. LVC also releases information concerning relative signal strength, distance, and the probability that ejected mass or a remnant disc survived the merger. In the case of events with a finite probability of being in more than one category, such as is likely to occur with a black hole-neutron star merger, it is shown how to estimate the masses of the components and the spin of the black hole. This technique is applied to the source S190426c.
Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black holes mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local Universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogues, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows, and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed.
The LIGO/Virgo collaboration has reported the detection of GW190412, a BH-BH merger with the most unequal masses to date: 24.4-34.7 Msun and 7.4-10.1 Msun (a mass ratio of q=0.21-0.41). Additionally, GW190412s effective spin was estimated to be Xeff=0.14-0.34, with the spin of the primary BH in the range a=0.17-0.59. Based on this and prior detections, about 10 percent of BH-BH mergers have q<0.4. Major BH-BH formation channels tend to produce BH-BH mergers with comparable masses (typically with q>0.5). Here we test whether the classical isolated binary evolution channel can produce mergers resembling GW190412. We show that our standard binary evolution scenario, with the typical assumptions on input physics we have used in the past, produces such mergers (masses and spins). For this particular model of the input physics the overall BH-BH merger rate density in the local Universe (z=0) is: 73.5 Gpc^-3 yr^-1, while for systems with q<0.41 the rate density is: 6.8 Gpc^-3 yr^-1. As GW190412 shows some weak evidence for misaligned spins, we provide distribution of precession parameter in our models and conclude that if among the new LIGO/Virgo detections the evidence of system precession is strong and more than 10 percent of BH-BH mergers have large in-plane spin components (Xp>0.5) then common envelope isolated binary BH-BH formation channel can be excluded as their origin.