Do you want to publish a course? Click here

Isolation and connectivity in random geometric graphs with self-similar intensity measures

76   0   0.0 ( 0 )
 Added by Carl Dettmann
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.



rate research

Read More

In this work we perform a detailed statistical analysis of topological and spectral properties of random geometric graphs (RGGs); a graph model used to study the structure and dynamics of complex systems embedded in a two dimensional space. RGGs, $G(n,ell)$, consist of $n$ vertices uniformly and independently distributed on the unit square, where two vertices are connected by an edge if their Euclidian distance is less or equal than the connection radius $ell in [0,sqrt{2}]$. To evaluate the topological properties of RGGs we chose two well-known topological indices, the Randic index $R(G)$ and the harmonic index $H(G)$. While we characterize the spectral and eigenvector properties of the corresponding randomly-weighted adjacency matrices by the use of random matrix theory measures: the ratio between consecutive eigenvalue spacings, the inverse participation ratios and the information or Shannon entropies $S(G)$. First, we review the scaling properties of the averaged measures, topological and spectral, on RGGs. Then we show that: (i) the averaged--scaled indices, $leftlangle R(G) rightrangle$ and $leftlangle H(G) rightrangle$, are highly correlated with the average number of non-isolated vertices $leftlangle V_times(G) rightrangle$; and (ii) surprisingly, the averaged--scaled Shannon entropy $leftlangle S(G) rightrangle$ is also highly correlated with $leftlangle V_times(G) rightrangle$. Therefore, we suggest that very reliable predictions of eigenvector properties of RGGs could be made by computing topological indices.
We investigate the clustering transition undergone by an exemplary random constraint satisfaction problem, the bicoloring of $k$-uniform random hypergraphs, when its solutions are weighted non-uniformly, with a soft interaction between variables belonging to distinct hyperedges. We show that the threshold $alpha_{rm d}(k)$ for the transition can be further increased with respect to a restricted interaction within the hyperedges, and perform an asymptotic expansion of $alpha_{rm d}(k)$ in the large $k$ limit. We find that $alpha_{rm d}(k) = frac{2^{k-1}}{k}(ln k + ln ln k + gamma_{rm d} + o(1))$, where the constant $gamma_{rm d}$ is strictly larger than for the uniform measure over solutions.
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.
We study random walks on a $d$-dimensional torus by affine expanding maps whose linear parts commute. Assuming an irrationality condition on their translation parts, we prove that the Haar measure is the unique stationary measure. We deduce that if $K subset mathbb{R}^d$ is an attractor of a finite iterated function system of $ngeq 2$ maps of the form $x mapsto D^{-r_i} x + t_i (i=1, ldots, n)$, where $D$ is an expanding $dtimes d$ integer matrix, and is the same for all the maps, and $r_{i} inmathbb{N}$, under an irrationality condition on the translation parts $t_i$, almost every point in $K$ (w.r.t. any Bernoulli measure) has an equidistributed orbit under the map $xmapsto Dx$ (multiplication mod $mathbb{Z}^{d}$). In the one-dimensional case, this conclusion amounts to normality to base $D$. Thus for example, almost every point in an irrational dilation of the middle-thirds Cantor set is normal to base 3.
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا