No Arabic abstract
We investigate the clustering transition undergone by an exemplary random constraint satisfaction problem, the bicoloring of $k$-uniform random hypergraphs, when its solutions are weighted non-uniformly, with a soft interaction between variables belonging to distinct hyperedges. We show that the threshold $alpha_{rm d}(k)$ for the transition can be further increased with respect to a restricted interaction within the hyperedges, and perform an asymptotic expansion of $alpha_{rm d}(k)$ in the large $k$ limit. We find that $alpha_{rm d}(k) = frac{2^{k-1}}{k}(ln k + ln ln k + gamma_{rm d} + o(1))$, where the constant $gamma_{rm d}$ is strictly larger than for the uniform measure over solutions.
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.
Random Constraint Satisfaction Problems exhibit several phase transitions when their density of constraints is varied. One of these threshold phenomena, known as the clustering or dynamic transition, corresponds to a transition for an information theoretic problem called tree reconstruction. In this article we study this threshold for two CSPs, namely the bicoloring of $k$-uniform hypergraphs with a density $alpha$ of constraints, and the $q$-coloring of random graphs with average degree $c$. We show that in the large $k,q$ limit the clustering transition occurs for $alpha = frac{2^{k-1}}{k} (ln k + ln ln k + gamma_{rm d} + o(1))$, $c= q (ln q + ln ln q + gamma_{rm d}+ o(1))$, where $gamma_{rm d}$ is the same constant for both models. We characterize $gamma_{rm d}$ via a functional equation, solve the latter numerically to estimate $gamma_{rm d} approx 0.871$, and obtain an analytic lowerbound $gamma_{rm d} ge 1 + ln (2 (sqrt{2}-1)) approx 0.812$. Our analysis unveils a subtle interplay of the clustering transition with the rigidity (naive reconstruction) threshold that occurs on the same asymptotic scale at $gamma_{rm r}=1$.
Random constraint satisfaction problems undergo several phase transitions as the ratio between the number of constraints and the number of variables is varied. When this ratio exceeds the satisfiability threshold no more solutions exist; the satisfiable phase, for less constrained problems, is itself divided in an unclustered regime and a clustered one. In the latter solutions are grouped in clusters of nearby solutions separated in configuration space from solutions of other clusters. In addition the rigidity transition signals the appearance of so-called frozen variables in typical solutions: beyond this threshold most solutions belong to clusters with an extensive number of variables taking the same values in all solutions of the cluster. In this paper we refine the description of this phenomenon by estimating the location of the freezing transition, corresponding to the disappearance of all unfrozen solutions (not only typical ones). We also unveil phase transitions for the existence and uniqueness of locked solutions, in which all variables are frozen. From a technical point of view we characterize atypical solutions with a number of frozen variables different from the typical value via a large deviation study of the dynamics of a stripping process (whitening) that unveils the frozen variables of a solution, building upon recent works on atypical trajectories of the bootstrap percolation dynamics. Our results also bear some relevance from an algorithmic perspective, previous numerical studies having shown that heuristic algorithms of various kinds usually output unfrozen solutions.
We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special property of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems.
The performance of a D-Wave Vesuvius quantum annealer was recently compared to a suite of classical algorithms on a class of constraint satisfaction instances based on frustrated loops. However, the construction of these instances leads the maximum coupling strength to increase with problem size. As a result, larger instances are subject to amplified analog control error, and are effectively annealed at higher temperatures in both hardware and software. We generate similar constraint satisfaction instances with limited range of coupling strength and perform a similar comparison to classical algorithms. On these instances the D-Wave Vesuvius processor, run with a fixed 20$mu$s anneal time, shows a scaling advantage over the software solvers for the hardest regime studied. This scaling advantage opens the possibility of quantum speedup on these problems. Our results support the hypothesis that performance of D-Wave Vesuvius processors is heavily influenced by analog control error, which can be reduced and mitigated as the technology matures.