Do you want to publish a course? Click here

Role of point defects in spinel Mg chalcogenide conductors

184   0   0.0 ( 0 )
 Added by Pieremanuele Canepa
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Close-packed chalcogenide spinels, such as MgSc$_2$Se$_4$, MgIn$_2$S$_4$ and MgSc$_2$S$_4$, show potential as solid electrolytes in Mg batteries, but are affected by non-negligible electronic conductivity, which contributes to self-discharge when used in an electrochemical storage device. Using first-principles calculations, we evaluate the energy of point defects as function of synthesis conditions and Fermi level to identify the origins of the undesired electronic conductivity. Our results suggest that Mg-vacancies and Mg-metal anti-sites (where Mg is exchanged with Sc or In) are the dominant point defects that can occur in the systems under consideration. While we find anion-excess conditions and slow cooling to likely create conditions for low electronic conductivity, the spinels are likely to exhibit significant $n$-type conductivity under anion-poor environments, which are often present during high temperature synthesis. Finally, we explore extrinsic aliovalent doping to potentially mitigate the electronic conductivity in these chalcogenide spinels. The computational strategy is general and can be easily extended to other solid electrolytes (and electrodes) to aid in the optimization of the electronic properties of the corresponding frameworks.



rate research

Read More

We use atomistic simulations to investigate grain boundary (GB) phase transitions in el- emental body-centered cubic (bcc) metal tungsten. Motivated by recent modeling study of grain boundary phase transitions in [100] symmetric tilt boundaries in face-centered cu- bic (fcc) copper, we perform a systematic investigation of [100] and [110] symmetric tilt high-angle and low-angle boundaries in bcc tungsten. The structures of these boundaries have been investigated previously by atomistic simulations in several different bcc metals including tungsten using the the {gamma}-surface method, which has limitations. In this work we use a recently developed computational tool based on the USPEX structure prediction code to perform an evolutionary grand canonical search of GB structure at 0 K. For high-angle [100] tilt boundaries the ground states generated by the evolutionary algorithm agree with the predictions of the {gamma}-surface method. For the [110] tilt boundaries, the search predicts novel high-density low-energy grain boundary structures and multiple grain boundary phases within the entire misorientation range. Molecular dynamics simulation demonstrate that the new structures are more stable at high temperature. We observe first-order grain boundary phase transitions and investigate how the structural multiplicity affects the mechanisms of the point defect absorption. Specifically, we demonstrate a two-step nucleation process, when initially the point defects are absorbed through a formation of a metastable GB structure with higher density, followed by a transformation of this structure into a GB interstitial loop or a different GB phase.
160 - F. Maca , J. Kudrnovsky , P. Balaz 2018
The antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure is a promising material for the AFM spintronics. The resistivity measurements indicate the presence of defects about whose types and concentrations is more speculated as known. We confirmed vacancies on Mn or Cu sublattices and Mn$_{rm Cu}$ and Cu$_{rm Mn}$ antisites as most probable defects in CuMnAs by our new ab initio total energy calculations. We have estimated resistivities of possible defect types as well as resistivities of samples for which the X-ray structural analysis is available. In the latter case we have found that samples with Cu- and Mn-vacancies with low formation energies have also resistivities which agree well with the experiment. Finally, we have also calculated exchange interactions and estimated the Neel temperatures by using the Monte Carlo approach. A good agreement with experiment was obtained.
In this work, we have systematically studied the role of point defects in the recombination time of monolayer MoS$_2$ using time-dependent ab initio non-adiabatic molecular dynamics simulations. Various types of point defects, such as S vacancy, S interstitial, Mo vacancy and Mo interstitial have been considered. We show that defects strongly accelerate the electron-hole recombination, especially interstitial S atoms do that by 3 orders of magnitude higher compared to pristine MoS$_2$. Mo defects (both vacancy and interstitial) introduce a multitude of de-excitation pathways via various defect levels in the energy gap. The results of this study provide some fundamental understanding of photoinduced de-excitation dynamics in presence of defects in highly technologically relevant 2D MoS$_2$.
Defects are inevitably present in two-dimensional (2D) materials and usually govern their various properties. Here a comprehensive density functional theory-based investigation of 7 kinds of point defects in a recently produced {gamma} allotrope of 2D phosphorus carbide ({gamma}-PC) is conducted. The defects, such as antisites, single C or P, and double C and P and C and C vacancies, are found to be stable in {gamma}-PC, while the Stone-Wales defect is not presented in {gamma}-PC due to its transition metal dichalcogenides-like structure. The formation energies, stability, and surface density of the considered defect species as well as their influence on the electronic structure of {gamma}-PC is systematically identified. The formation of point defects in {gamma}-PC is found to be less energetically favourable then in graphene, phosphorene, and MoS2. Meanwhile, defects can significantly modulate the electronic structure of {gamma}-PC by inducing hole/electron doping. The predicted scanning tunneling microscopy images suggest that most of the point defects are easy to distinguish from each other and that they can be easily recognized in experiments.
117 - R. Monnier , B. Delley 2001
The formation energy and local magnetic moment of a series of point defects in CaB$_6 $ are computed using a supercell approach within the generalized gradient approximation to density functional theory. Based on these results, speculations are made as to the influence of these defects on electrical transport. It is found that the substitution of Ca by La does not lead to the formation of a local moment, while a neutral B$_6 $ vacancy carries a moment of 2.4 Bohr magnetons, mostly distributed over the six nearest-neighbour B atoms. A plausible mechanism for the ferromagnetic ordering of these moments is suggested. Since the same broken B-B bonds appear on the preferred (100) cleavage planes of the CaB$_6$ structure, it is argued that internal surfaces in polycrystals as well as external surfaces in general will make a large contribution to the observed magnetization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا