Do you want to publish a course? Click here

Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects

101   0   0.0 ( 0 )
 Added by Timofey Frolov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use atomistic simulations to investigate grain boundary (GB) phase transitions in el- emental body-centered cubic (bcc) metal tungsten. Motivated by recent modeling study of grain boundary phase transitions in [100] symmetric tilt boundaries in face-centered cu- bic (fcc) copper, we perform a systematic investigation of [100] and [110] symmetric tilt high-angle and low-angle boundaries in bcc tungsten. The structures of these boundaries have been investigated previously by atomistic simulations in several different bcc metals including tungsten using the the {gamma}-surface method, which has limitations. In this work we use a recently developed computational tool based on the USPEX structure prediction code to perform an evolutionary grand canonical search of GB structure at 0 K. For high-angle [100] tilt boundaries the ground states generated by the evolutionary algorithm agree with the predictions of the {gamma}-surface method. For the [110] tilt boundaries, the search predicts novel high-density low-energy grain boundary structures and multiple grain boundary phases within the entire misorientation range. Molecular dynamics simulation demonstrate that the new structures are more stable at high temperature. We observe first-order grain boundary phase transitions and investigate how the structural multiplicity affects the mechanisms of the point defect absorption. Specifically, we demonstrate a two-step nucleation process, when initially the point defects are absorbed through a formation of a metastable GB structure with higher density, followed by a transformation of this structure into a GB interstitial loop or a different GB phase.



rate research

Read More

119 - Cong Tao 2021
Oxygen vacancies have been identified to play an important role in accelerating grain growth in polycrystalline perovskite-oxide ceramics. In order to advance the fundamental understanding of growth mechanisms at the atomic scale, classical atomistic simulations were carried out to investigate the atomistic structures and oxygen vacancy formation energies at grain boundaries in the prototypical perovskite-oxide material SrTiO$_3$. In this work, we focus on two symmetric tilt grain boundaries, namely $Sigma$5(310)[001] and $Sigma$5(210)[001]. A one-dimensional continuum model is adapted to determine the electrostatic potential induced by charged lattice planes in atomistic structure models containing grain boundaries and point defects. By means of this model, electrostatic artifacts, which are inherent to supercell models with periodic or open boundary conditions, can be taken into account and corrected properly. We report calculated formation energies of oxygen vacancies on all the oxygen sites across boundaries between two misoriented grains, and we analyze and discuss the formation-energy values with respect to local charge densities at the vacant sites.
The strong spin-spin exchange interaction in some low-dimensional magnetic materials can give rise to a high group velocity and thermal conductivity contribution from magnons. One example is the incommensurate layered compounds (Sr,Ca,La)14Cu24O41. The effects of grain boundaries and defects on quasi-one-dimensional magnon transport in these compounds are not well understood. Here we report the microstructures and anisotropic thermal transport properties of textured Sr14Cu24O41, which are prepared by solid-state reaction followed by spark plasma sintering. Transmission electron microscopy clearly reveals nano-layered grains and the presence of dislocations and planar defects. The thermal conductivity contribution and mean free paths of magnons in the textured samples are evaluated with the use of a kinetic model for one-dimensional magnon transport, and found to be suppressed significantly as compared to single crystals at low temperatures. The experimental results can be explained by a one-dimensional magnon-defect scattering model, provided that the magnon-grain boundary scattering mean free path in the anisotropic magnetic structure is smaller than the average length of these nano-layers along the c axis. The finding suggests low transmission coefficients for magnons across grain boundaries.
101 - R. Saniz , J. bekaert , B.Partoens 2021
We present a first-principles computational study of cation-Se $Sigma$3 (112) grain boundaries in CuGaSe$_2$. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a $p$-type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe$_2$ grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe$_2$, which we assume reflect the properties of the grain interiors.
We present a systematic trend study of the symmetric tilt grain boundaries about the <110> axis in molybdenum. Our results show that multiple structural phases, some incorporating vacancies, compete for the boundary ground state. We find that at low external stress vacancies prefer to bind to the boundaries in high concentrations, and moreover, that external stress drives structural phase transitions which correspond to switching the boundaries on and off as pipe-diffusion pathways for vacancies. Finally, we present physical arguments which indicate these phenomena are likely to occur in the other bcc transition metals as well.
Multi-crystalline silicon is widely used for producing low-cost and high-efficiency solar cells. During crystal growth and device fabrication, silicon solar cells contain grain boundaries (GBs) which are preferential segregation sites for atomic impurities such as oxygen atoms. GBs can induce charge carriers recombination significantly reducing carrier lifetimes and therefore they can be detrimental for Si device performance. We studied the correlation between structural, energetic and electronic properties of {Sigma}3{111} Si GB in the presence of vacancies, strain and multiple O segregation. The study of the structural and energetic properties of GBs in the presence of strain and vacancies gives an accurate description of the complex mechanisms that control the segregation of oxygen atoms. We analysed tensile and compressive strain and we obtained that local tensile strain around O impurities is very effective for segregation. We also studied the role of multiple O impurities in the presence of Si vacancies finding that the segregation is favorite for those structures which have restored tetrahedral covalent bonds. The presence of vacancies attract atomic impurities in order to restore the electronic stability: the interstitial impurity becomes substitutional. This analysis was the starting point to correlate the change of the electronic properties in {Sigma}3{111}Si GBs with O impurities in the presence of strain and vacancies. For each structure we analysed the density of states and its projection on atoms and states, the band gaps, the segregation energy and their correlation in order to characterise the nature of new energy levels. Actually, knowing the origin of defined electronic states would allow the optimization of materials in order to reduce non-radiative electron-hole recombination avoiding charge and energy losses and therefore improving solar cell efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا