Do you want to publish a course? Click here

On the Long-Term Memory of Deep Recurrent Networks

175   0   0.0 ( 0 )
 Added by Yoav Levine
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

A key attribute that drives the unprecedented success of modern Recurrent Neural Networks (RNNs) on learning tasks which involve sequential data, is their ability to model intricate long-term temporal dependencies. However, a well established measure of RNNs long-term memory capacity is lacking, and thus formal understanding of the effect of depth on their ability to correlate data throughout time is limited. Specifically, existing depth efficiency results on convolutional networks do not suffice in order to account for the success of deep RNNs on data of varying lengths. In order to address this, we introduce a measure of the networks ability to support information flow across time, referred to as the Start-End separation rank, which reflects the distance of the function realized by the recurrent network from modeling no dependency between the beginning and end of the input sequence. We prove that deep recurrent networks support Start-End separation ranks which are combinatorially higher than those supported by their shallow counterparts. Thus, we establish that depth brings forth an overwhelming advantage in the ability of recurrent networks to model long-term dependencies, and provide an exemplar of quantifying this key attribute which may be readily extended to other RNN architectures of interest, e.g. variants of LSTM networks. We obtain our results by considering a class of recurrent networks referred to as Recurrent Arithmetic Circuits, which merge the hidden state with the input via the Multiplicative Integration operation, and empirically demonstrate the discussed phenomena on common RNNs. Finally, we employ the tool of quantum Tensor Networks to gain additional graphic insight regarding the complexity brought forth by depth in recurrent networks.



rate research

Read More

It is well known that it is challenging to train deep neural networks and recurrent neural networks for tasks that exhibit long term dependencies. The vanishing or exploding gradient problem is a well known issue associated with these challenges. One approach to addressing vanishing and exploding gradients is to use either soft or hard constraints on weight matrices so as to encourage or enforce orthogonality. Orthogonal matrices preserve gradient norm during backpropagation and may therefore be a desirable property. This paper explores issues with optimization convergence, speed and gradient stability when encouraging or enforcing orthogonality. To perform this analysis, we propose a weight matrix factorization and parameterization strategy through which we can bound matrix norms and therein control the degree of expansivity induced during backpropagation. We find that hard constraints on orthogonality can negatively affect the speed of convergence and model performance.
148 - Xiangang Li , Xihong Wu 2014
Long short-term memory (LSTM) based acoustic modeling methods have recently been shown to give state-of-the-art performance on some speech recognition tasks. To achieve a further performance improvement, in this research, deep extensions on LSTM are investigated considering that deep hierarchical model has turned out to be more efficient than a shallow one. Motivated by previous research on constructing deep recurrent neural networks (RNNs), alternative deep LSTM architectures are proposed and empirically evaluated on a large vocabulary conversational telephone speech recognition task. Meanwhile, regarding to multi-GPU devices, the training process for LSTM networks is introduced and discussed. Experimental results demonstrate that the deep LSTM networks benefit from the depth and yield the state-of-the-art performance on this task.
85 - Thomas E. Portegys 2021
This study compares the modularity performance of two artificial neural network architectures: a Long Short-Term Memory (LSTM) recurrent network, and Morphognosis, a neural network based on a hierarchy of spatial and temporal contexts. Mazes are used to measure performance, defined as the ability to utilize independently learned mazes to solve mazes composed of them. A maze is a sequence of rooms connected by doors. The modular task is implemented as follows: at the beginning of the maze, an initial door choice forms a context that must be retained until the end of an intervening maze, where the same door must be chosen again to reach the goal. For testing, the door-association mazes and separately trained intervening mazes are presented together for the first time. While both neural networks perform well during training, the testing performance of Morphognosis is significantly better than LSTM on this modular task.
87 - Xiangang Li , Xihong Wu 2016
Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence history. On the other hand, the convolutional neural networks (CNNs) have brought significant improvements to deep feed-forward neural networks (FFNNs), as they are able to better reduce spectral variation in the input signal. In this paper, a network architecture called as convolutional recurrent neural network (CRNN) is proposed by combining the CNN and LSTM RNN. In the proposed CRNNs, each speech frame, without adjacent context frames, is organized as a number of local feature patches along the frequency axis, and then a LSTM network is performed on each feature patch along the time axis. We train and compare FFNNs, LSTM RNNs and the proposed LSTM CRNNs at various number of configurations. Experimental results show that the LSTM CRNNs can exceed state-of-the-art speech recognition performance.
Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-Term Memory (LSTM), one kind of Recurrent Neural Network (RNN) schemes, has attracted a lot of attentions due to its capability of processing the long-range dependency embedded in the sequential traffic data. However, LSTM has considerable computational cost, which can not be tolerated in tasks with stringent latency requirement. In this paper, we propose a deep learning model based on LSTM, called Random Connectivity LSTM (RCLSTM). Compared to the conventional LSTM, RCLSTM makes a notable breakthrough in the formation of neural network, which is that the neurons are connected in a stochastic manner rather than full connected. So, the RCLSTM, with certain intrinsic sparsity, have many neural connections absent (distinguished from the full connectivity) and which leads to the reduction of the parameters to be trained and the computational cost. We apply the RCLSTM to predict traffic and validate that the RCLSTM with even 35% neural connectivity still shows a satisfactory performance. When we gradually add training samples, the performance of RCLSTM becomes increasingly closer to the baseline LSTM. Moreover, for the input traffic sequences of enough length, the RCLSTM exhibits even superior prediction accuracy than the baseline LSTM.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا