No Arabic abstract
Bulk chromium triiodide (CrI$_3$) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light-matter interactions and magneto-optical phenomena in the atomically thin limit. Here, we report spontaneous circularly polarized photoluminescence in monolayer CrI$_3$ under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI$_3$ photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI$_3$ bilayers. Distinct from the Wannier-Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI$_3$. We attribute the photoluminescence to a parity-forbidden d-d transition characteristic of Cr$^{3+}$ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.
We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y$_3$Fe$_5$O$_{12}$ (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the non-local resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a new path towards the development of spin logics.
The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.
Two-dimensional quantum spin Hall (QSH) insulators are a promising material class for spintronic applications based on dissipationless topologically-protected spin currents in their edges. Yet, they have not lived up to their technological potential, as experimental realizations are scarce and limited to cryogenic temperatures. These constraints have also severely restricted the characterization of their dynamical properties, imperative for the design of QSH devices operating under nonequilibrium conditions. Here, we report on the electron dynamics of the novel room-temperature QSH candidate bismuthene after photoexcitation using time- and angle-resolved photoemission spectroscopy. We map the transiently occupied conduction band and observe a metallic dispersive feature within the bulk band gap - a signature of topological edge states. Our analysis of hot photocarrier lifetimes provides insight into the microscopic scattering processes and the key role of edge states. The demonstration of the large bulk band gap and stability of edge states at room temperature marks a critical step towards QSH applications.
How to control collectively ordered electronic states is a core interest of condensed matter physics. We report an electric field controlled reversible transition from superconductor to ferromagnetic insulator in (Li,Fe)OHFeSe thin flake using solid ion conductor as the gate dielectric. By driving Li ions into and out of the (Li,Fe)OHFeSe thin flake with electric field, we obtained a dome-shaped superconducting region with optimal Tc ~ 43 K, which is separated by a quantum critical point from ferromagnetically insulating phase. The ferromagnetism arises from the long range order of the interstitial Fe ions expelled from the (Li,Fe)OH layers by Li injection. The device can reversibly manipulate collectively ordered electronic states and stabilize new metastable structures by electric field.
In this paper, we investigate theoretically the spin-orbit torque as well as the Gilbert damping for a two band model of a 2D helical surface state with a Ferromagnetic (FM) exchange coupling. We decompose the density matrix into the Fermi sea and Fermi surface components and obtain their contributions to the electronic transport as well as the spin-orbit torque (SOT). Furthermore, we obtain the expression for the Gilbert damping due to the surface state of a 3D Topological Insulator (TI) and predicted its dependence on the direction of the magnetization precession axis.