Do you want to publish a course? Click here

Low-dimensional quantum magnetism in Cu(NCS)$_2$: A molecular framework material

84   0   0.0 ( 0 )
 Added by Matthew Cliffe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-dimensional magnetic materials with spin-$frac{1}{2}$ moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure and magnetic properties of copper(II) thiocyanate, Cu(NCS)$_2$, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, $^{13}$C magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopy, and density functional theory (DFT) investigations indicate that Cu(NCS)$_2$ behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains ($J_2 = 133(1)$ K, $alpha = J_1/J_2 = 0.08$). Powder neutron-diffraction measurements confirm that Cu(NCS)$_2$ orders as a commensurate antiferromagnet below $T_mathrm{N} = 12$ K, with a strongly reduced ordered moment (0.3 $mu_mathrm{B}$) due to quantum fluctuations.



rate research

Read More

Inelastic neutron scattering for temperatures below 30 K from a powder of LiZn2Mo3O8 demonstrates this triangular-lattice antiferromagnet hosts collective magnetic excitations from spin 1/2 Mo3O13 molecules. Apparently gapless (Delta < 0.2 meV) and extending at least up to 2.5 meV, the low energy magnetic scattering cross section is surprisingly broad in momentum space and involves one third of the spins present above 100 K. The data are compatible with the presence of valence-bonds involving nearest-neighbor and next-nearest-neighbor spins forming a disordered or dynamic state.
We report $alpha$-Cu$_2$V$_2$O$_7$ to be an improper multiferroic with the simultaneous development of electric polarization and magnetization below $T_C$ = 35 K. The observed spontaneous polarization of magnitude 0.55 $mu$Ccm$^{-2}$ is highest among the copper based improper multiferroic materials. Our study demonstrates sizable amount of magneto-electric coupling below $T_C$ even with a low magnetic field. The theoretical calculations based on density functional theory (DFT) indicate magnetism in $alpha$-Cu$_2$V$_2$O$_7$ is a consequence of {em ferro-orbital} ordering driven by polar lattice distortion due to the unique pyramidal (CuO$_{5}$) environment of Cu. The spin orbit coupling (SOC) further stabilize orbital ordering and is crucial for magnetism. The calculations indicate that the origin of the giant ferroelectric polarization is primarily due to the symmetric exchange-striction mechanism and is corroborated by temperature dependent X-ray studies.
Single crystals of the layered organic type II superconductor, $kappa$-(BEDT-TTF)$_{2}$Cu(NCS)$_{2}$, have been studied in magnetic fields of up to 33 T and at temperatures between 0.5 K and 11 K using a compact differential susceptometer. When the magnetic field lies precisely in the quasi-two-dimensional planes of the material, there is strong evidence for a phase transition from the superconducting mixed state into a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, manisfested as a change in the rigidity of the vortex system. The behaviour of the transition as a function of temperature is in good agreement with theoretical predictions.
We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The two sublattices order at different temperatures and effective exchange couplings within the sublattices differ by an order of magnitude. This yields an inelastic neutron spectrum of the Cu$_{rm A}$ sublattice extending up to 300 meV and a much weaker dispersion of Cu$_{rm B}$ going up to around 20 meV. Using a single-band Hubbard model we derive an effective spin Hamiltonian. From this, we find that linear spin-wave theory gives a good description to the magnetic spectrum. In addition, a magnetic field of 10 T is found to produce effects on the Cu$_{rm B}$ dispersion that cannot be explained by conventional spin-wave theory.
Kitaev quantum spin liquids (QSLs) are exotic states of matter that are predicted to host Majorana fermions and gauge flux excitations. However, so far all known Kitaev QSL candidates are known to have appreciable non-Kitaev interactions that pushes these systems far from the QSL regime. Using time-domain terahertz spectroscopy (TDTS) we show that the honeycomb cobalt-based Kitaev QSL candidate, BaCo$_2$(AsO$_4$)$_2$, has dominant Kitaev interactions. Due to only small non-Kitaev terms a magnetic continuum consistent with Majorana fermions and the existence of a Kitaev QSL can be induced by a small 4 T out-of-plane-magnetic field. Applying an even smaller in-plane magnetic field $sim$ 0.5 T suppresses the effects of the non-Kitaev interactions and gives rise to a field induced intermediate state also consistent with a QSL. These results may have fundamental impact for realizing quantum computation. Our results demonstrate BaCo$_2$(AsO$_4$)$_2$ as a far more ideal version of Kitaev QSL compared with other candidates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا