Do you want to publish a course? Click here

Combinatorial Multi-armed Bandits for Real-Time Strategy Games

166   0   0.0 ( 0 )
 Added by Santiago Ontanon
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Games with large branching factors pose a significant challenge for game tree search algorithms. In this paper, we address this problem with a sampling strategy for Monte Carlo Tree Search (MCTS) algorithms called {em na{i}ve sampling}, based on a variant of the Multi-armed Bandit problem called {em Combinatorial Multi-armed Bandits} (CMAB). We analyze the theoretical properties of several variants of {em na{i}ve sampling}, and empirically compare it against the other existing strategies in the literature for CMABs. We then evaluate these strategies in the context of real-time strategy (RTS) games, a genre of computer games characterized by their very large branching factors. Our results show that as the branching factor grows, {em na{i}ve sampling} outperforms the other sampling strategies.



rate research

Read More

This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This approach addresses, at the same time and in a principled way, both the problem of collecting data to model the characteristics of interest for the current player and the problem of adapting the interactive experience based on this model. Second, we present an approach to evaluating and fine-tuning these algorithms prior to generating data in a user study. This is an important problem, because conducting user studies is an expensive and labor-intensive process; therefore, an ability to evaluate the algorithms beforehand can save a significant amount of resources. We evaluate our approach in the context of modeling players social comparison orientation (SCO) and present empirical results from both simulations and real players.
133 - Santiago Ontanon 2012
Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reasons. For example, minimax assumes a turn-taking game mechanics, not present in RTS games. In this paper we present RTMM, a real-time variant of the standard minimax algorithm, and discuss its applicability in the context of RTS games. We discuss its strengths and weaknesses, and evaluate it in two real-time games.
We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedback signal. Moreover, in each step, it can take a special action, called the $stop$ action, that ends the current episode. After the $stop$ action is taken, the learner collects a terminal reward, and observes the costs and terminal rewards associated with each step of the episode. The goal of the learner is to maximize its cumulative gain (i.e., the terminal reward minus costs) over all episodes by learning to choose the best sequence of actions based on the feedback. First, we define an {em oracle} benchmark, which sequentially selects the actions that maximize the expected immediate gain. Then, we propose our online learning algorithm, named {em FeedBack Adaptive Learning} (FeedBAL), and prove that its regret with respect to the benchmark is bounded with high probability and increases logarithmically in expectation. Moreover, the regret only has polynomial dependence on the number of steps, actions and states. eMAB can be used to model applications that involve humans in the loop, ranging from personalized medical screening to personalized web-based education, where sequences of actions are taken in each episode, and optimal behavior requires adapting the chosen actions based on the feedback.
We consider nonstationary multi-armed bandit problems where the model parameters of the arms change over time. We introduce the adaptive resetting bandit (ADR-bandit), which is a class of bandit algorithms that leverages adaptive windowing techniques from the data stream community. We first provide new guarantees on the quality of estimators resulting from adaptive windowing techniques, which are of independent interest in the data mining community. Furthermore, we conduct a finite-time analysis of ADR-bandit in two typical environments: an abrupt environment where changes occur instantaneously and a gradual environment where changes occur progressively. We demonstrate that ADR-bandit has nearly optimal performance when the abrupt or global changes occur in a coordinated manner that we call global changes. We demonstrate that forced exploration is unnecessary when we restrict the interest to the global changes. Unlike the existing nonstationary bandit algorithms, ADR-bandit has optimal performance in stationary environments as well as nonstationary environments with global changes. Our experiments show that the proposed algorithms outperform the existing approaches in synthetic and real-world environments.
We consider the stochastic bandit problem with a continuous set of arms, with the expected reward function over the arms assumed to be fixed but unknown. We provide two new Gaussian process-based algorithms for continuous bandit optimization-Improved GP-UCB (IGP-UCB) and GP-Thomson sampling (GP-TS), and derive corresponding regret bounds. Specifically, the bounds hold when the expected reward function belongs to the reproducing kernel Hilbert space (RKHS) that naturally corresponds to a Gaussian process kernel used as input by the algorithms. Along the way, we derive a new self-normalized concentration inequality for vector- valued martingales of arbitrary, possibly infinite, dimension. Finally, experimental evaluation and comparisons to existing algorithms on synthetic and real-world environments are carried out that highlight the favorable gains of the proposed strategies in many cases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا