Do you want to publish a course? Click here

Opportunities for plasma separation techniques in rare earth elements recycling

61   0   0.0 ( 0 )
 Added by Renaud Gueroult
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rare earth elements recycling has been proposed to alleviate supply risks and market volatility. In this context, the potential of a new recycling pathway, namely plasma mass separation, is uncovered through the example of nedodymium - iron - boron magnets recycling. Plasma mass separation is shown to address some of the shortcomings of existing rare earth elements recycling pathways, in particular detrimental environmental effects. A simplified mass separation model suggests that plasma separation performances could compare favourably with existing recycling options. In addition, simple energetic considerations of plasma processing suggest that the cost of these techniques may not be prohibitive, particularly considering that energy costs from solar may become significantly cheaper. Further investigation and experimental demonstration of plasma separation techniques should permit asserting the potential of these techniques against other recycling techniques currently under development.



rate research

Read More

Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.
High-throughput plasma separation based on atomic mass holds the promise for offering unique solutions to a variety of high-impact societal applications. Through the mass differential effects they exhibit, crossed-field configurations can in principle be exploited in various ways to separate ions based on atomic mass. Yet, the practicality of these concepts is conditioned upon the ability to drive suitable crossed-field flows for plasma parameters compatible with high-throughput operation. Limited current predictive capabilities have not yet made it possible to confirm this possibility. Yet, past experimental results suggest that end-electrodes biasing may be effective, at least for certain electric field values. A better understanding of cross-field conductivity is needed to confirm these results and confirm the potential of crossed-field configurations for high-throughput separation.
174 - K Kadowaki , T Goya , T Mochiji 2008
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxypnictide show superconducting transition as high as 43.9 K from temperature dependent resistance measurements with the Meissner effect observed at a lower temperature of 40.8 K from temperature dependent magnetization measurements. By replacing a small amount of gadolinium with yttrium Tc was observed to be lowered by 10 K which might be caused by a change in the electronic or magnetic structures since the crystal structure was not altered.
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {it et.~al.}, Applied Optics {bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {bf 199}, pp 143-148 (2001)) have been proposed. In this paper we apply both methods to a sample laser-plasma interferogram obtained with femtoseconds probe pulse, in an experimental setup devoted to laser particle acceleration studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا