Do you want to publish a course? Click here

Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)

197   0   0.0 ( 0 )
 Added by Shen Chong
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxypnictide show superconducting transition as high as 43.9 K from temperature dependent resistance measurements with the Meissner effect observed at a lower temperature of 40.8 K from temperature dependent magnetization measurements. By replacing a small amount of gadolinium with yttrium Tc was observed to be lowered by 10 K which might be caused by a change in the electronic or magnetic structures since the crystal structure was not altered.



rate research

Read More

Here we report a new class of superconductors prepared by high pressure synthesis in the quaternary family ReFeAsO1-delta (Re = Sm, Nd, Pr, Ce, La) without fluorine doping. The onset superconducting critical temperature (Tc) in these compounds increases with the reduction of Re atom size, and the highest Tc obtained so far is 55 K in SmFeAsO1-delta. For the NdFeAsO1-delta system with different oxygen concentration a dome-shaped phase diagram was found.
123 - Jie Yang , Xiao-Li Shen , Wei Lu 2008
New iron-arsenide superconductors of REFeAsO1-delta (RE = Ho, Y, Dy and Tb) were successfully synthesized by a high pressure synthesizing method with a special rapid quenching process, with the onset superconducting critical temperatures at 50.3 K, 46.5 K, 52.2K and 48.5 K for RE = Ho, Y, Dy and Tb respectively.
The properties of the MoSr2RCu2O8 (R=rare earth) system are found to systematically change with the contraction of the R ions. For the light R ions (La-Nd) the samples are paramagnetic down to 5 K, whereas in the intermediate range (Sm-Tb), the Mo sublattice orders antiferromagnetically at TN, ranging from 11 to 24 K. For the heavy R ions, Ho-Tm and Y, superconductivity appears at TC in the range 19-27 K and antiferromagnetism sets in at TN < TC. This latter behavior resembles most of the magneto-superconductors, but is in sharp contrast to the iso-structural RuSr2RCu2O8 system where TN > TC.
152 - Peng Cheng , Bing Shen , Gang Mu 2008
We have successfully synthesized the fluoride-arsenide compounds Ca$_{1-x}$RE$_x$FeAsF (RE=Nd, Pr; x=0, 0.6). The x-ray powder diffraction confirmed that the main phases of our samples are Ca$_{1-x}$RE$_x$FeAsF with the ZrCuSiAs structure. By measuring resistivity, superconductivity was observed at 57.4 K in Nd-doped and 52.8 K in Pr-doped samples with x=0.6. Bulk superconductivity was also proved by the DC magnetization measurements in both samples. Hall effect measurements revealed hole-like charge carriers in the parent compound CaFeAsF with a clear resistivity anomaly below 118 K, while the Hall coefficient $R_H$ in the normal state is negative for the superconducting samples Ca$_{0.4}$Nd$_{0.6}$FeAsF and Ca$_{0.4}$Pr$_{0.6}$FeAsF. This indicates that the rare earth element doping introduces electrons into CaFeAsF which induces the high temperature superconductivity.
523 - S. R. Saha , N. P. Butch , T. Drye 2011
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering experiments indicate that an isostructural collapse of the tetragonal unit cell can be controllably induced at ambient pressures by choice of substituent ion size. This instability is driven by the interlayer As-As anion separation, resulting in an unprecedented thermal expansion coefficient of $180times 10^{-6}$ K$^{-1}$. Electrical transport and magnetic susceptibility measurements reveal abrupt changes in the physical properties through the collapse as a function of temperature, including a reconstruction of the electronic structure. Superconductivity with onset transition temperatures as high as 47 K is stabilized by the suppression of antiferromagnetic order via chemical pressure, electron doping or a combination of both. Extensive investigations are performed to understand the observations of partial volume-fraction diamagnetic screening, ruling out extrinsic sources such as strain mechanisms, surface states or foreign phases as the cause of this superconducting phase that appears to be stable in both collapsed and uncollapsed structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا