No Arabic abstract
This is the first of a series of papers dedicated to the study of the partition function of three-dimensional quantum gravity on the twisted solid torus with the aim to deepen our understanding of holographic dualities from a non-perturbative quantum gravity perspective. Our aim is to compare the Ponzano-Regge model for non-perturbative three-dimensional quantum gravity with the previous perturbative calculations of this partition function. We begin by reviewing the results obtained in the past ten years via a wealth of different approaches, and then introduce the Ponzano--Regge model in a self-contained way. Thanks to the topological nature of three-dimensional quantum gravity we can solve exactly for the bulk degrees of freedom and identify dual boundary theories which depend on the choice of boundary states, that can also describe finite, non-asymptotic boundaries. This series of papers aims precisely at the investigation of the role played by the different quantum boundary conditions leading to different boundary theories. Here, we will describe the spin network boundary states for the Ponzano-Regge model on the twisted torus and derive the general expression for the corresponding partition functions. We identify a class of boundary states describing a tessellation with maximally fuzzy squares for which the partition function can be explicitly evaluated. In the limit case of a large, but finely discretized, boundary we find a dependence on the Dehn twist angle characteristic for the BMS3 character. We furthermore show how certain choices of boundary states lead to known statistical models as dual field theories-but with a twist.
We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano-Regge state-sum model, which defines 3d quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3d quantum gravity and 2d statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3d/2d holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.
We analyze the partition function of three-dimensional quantum gravity on the twisted solid tours and the ensuing dual field theory. The setting is that of a non-perturbative model of three dimensional quantum gravity--the Ponzano-Regge model, that we briefly review in a self-contained manner--which can be used to compute quasi-local amplitudes for its boundary states. In this second paper of the series, we choose a particular class of boundary spin-network states which impose Gibbons-Hawking-York boundary conditions to the partition function. The peculiarity of these states is to encode a two-dimensional quantum geometry peaked around a classical quadrangulation of the finite toroidal boundary. Thanks to the topological properties of three-dimensional gravity, the theory easily projects onto the boundary while crucially still keeping track of the topological properties of the bulk. This produces, at the non-perturbative level, a specific non-linear sigma-model on the boundary, akin to a Wess-Zumino-Novikov-Witten model, whose classical equations of motion can be used to reconstruct different bulk geometries: the expected classical one is accompanied by other quantum solutions. The classical regime of the sigma-model becomes reliable in the limit of large boundary spins, which coincides with the semiclassical limit of the boundary geometry. In a 1-loop approximation around the solutions to the classical equations of motion, we recover (with corrections due to the non-classical bulk geometries) results obtained in the past via perturbative quantum General Relativity and through the study of characters of the BMS3 group. The exposition is meant to be completely self-contained.
We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limit while the boundary state functional remains quantum-mechanical. The properties of the resulting boundary theory are discussed.
We investigate the propagator of 3d quantum gravity, formulated as a discrete topological path integral. We define it as the Ponzano-Regge amplitude of the solid cylinder swept by a 2d disk evolving in time. Quantum states for a 2d disk live in the tensor products of N spins, where N is the number of holonomy insertions connecting to the disk boundary. We formulate the cylindric amplitude in terms of a transfer matrix and identify its eigen-modes in terms of spin recoupling. We show that the propagator distinguishes the subspaces with different total spin and may select the vanishing total spin sector at late time depending on the chosen cylinder boundary data. We discuss applications to quantum circuits and the possibility of experimental simulations of this 3d quantum gravity propagator.
We investigate the non-perturbative degrees of freedom of a class of weakly non-local gravitational theories that have been proposed as an ultraviolet completion of general relativity. At the perturbative level, it is known that the degrees of freedom of non-local gravity are the same of the Einstein--Hilbert theory around any maximally symmetric spacetime. We prove that, at the non-perturbative level, the degrees of freedom are actually eight in four dimensions, contrary to what one might guess on the basis of the infinite number of derivatives present in the action. It is shown that six of these degrees of freedom do not propagate on Minkowski spacetime, but they might play a role at large scales on curved backgrounds. We also propose a criterion to select the form factor almost uniquely.