Do you want to publish a course? Click here

Quasi-local holographic dualities in non-perturbative 3d quantum gravity

172   0   0.0 ( 0 )
 Added by Etera R. Livine
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano-Regge state-sum model, which defines 3d quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3d quantum gravity and 2d statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3d/2d holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.



rate research

Read More

We analyze the partition function of three-dimensional quantum gravity on the twisted solid tours and the ensuing dual field theory. The setting is that of a non-perturbative model of three dimensional quantum gravity--the Ponzano-Regge model, that we briefly review in a self-contained manner--which can be used to compute quasi-local amplitudes for its boundary states. In this second paper of the series, we choose a particular class of boundary spin-network states which impose Gibbons-Hawking-York boundary conditions to the partition function. The peculiarity of these states is to encode a two-dimensional quantum geometry peaked around a classical quadrangulation of the finite toroidal boundary. Thanks to the topological properties of three-dimensional gravity, the theory easily projects onto the boundary while crucially still keeping track of the topological properties of the bulk. This produces, at the non-perturbative level, a specific non-linear sigma-model on the boundary, akin to a Wess-Zumino-Novikov-Witten model, whose classical equations of motion can be used to reconstruct different bulk geometries: the expected classical one is accompanied by other quantum solutions. The classical regime of the sigma-model becomes reliable in the limit of large boundary spins, which coincides with the semiclassical limit of the boundary geometry. In a 1-loop approximation around the solutions to the classical equations of motion, we recover (with corrections due to the non-classical bulk geometries) results obtained in the past via perturbative quantum General Relativity and through the study of characters of the BMS3 group. The exposition is meant to be completely self-contained.
This is the first of a series of papers dedicated to the study of the partition function of three-dimensional quantum gravity on the twisted solid torus with the aim to deepen our understanding of holographic dualities from a non-perturbative quantum gravity perspective. Our aim is to compare the Ponzano-Regge model for non-perturbative three-dimensional quantum gravity with the previous perturbative calculations of this partition function. We begin by reviewing the results obtained in the past ten years via a wealth of different approaches, and then introduce the Ponzano--Regge model in a self-contained way. Thanks to the topological nature of three-dimensional quantum gravity we can solve exactly for the bulk degrees of freedom and identify dual boundary theories which depend on the choice of boundary states, that can also describe finite, non-asymptotic boundaries. This series of papers aims precisely at the investigation of the role played by the different quantum boundary conditions leading to different boundary theories. Here, we will describe the spin network boundary states for the Ponzano-Regge model on the twisted torus and derive the general expression for the corresponding partition functions. We identify a class of boundary states describing a tessellation with maximally fuzzy squares for which the partition function can be explicitly evaluated. In the limit case of a large, but finely discretized, boundary we find a dependence on the Dehn twist angle characteristic for the BMS3 character. We furthermore show how certain choices of boundary states lead to known statistical models as dual field theories-but with a twist.
We investigate the non-perturbative degrees of freedom of a class of weakly non-local gravitational theories that have been proposed as an ultraviolet completion of general relativity. At the perturbative level, it is known that the degrees of freedom of non-local gravity are the same of the Einstein--Hilbert theory around any maximally symmetric spacetime. We prove that, at the non-perturbative level, the degrees of freedom are actually eight in four dimensions, contrary to what one might guess on the basis of the infinite number of derivatives present in the action. It is shown that six of these degrees of freedom do not propagate on Minkowski spacetime, but they might play a role at large scales on curved backgrounds. We also propose a criterion to select the form factor almost uniquely.
167 - Christophe Goeller 2020
This thesis is dedicated to the study of quasi-local boundary in quantum gravity in the 3D space-time case. This research takes root in the holographic principle, which conjectures that the geometry and the dynamic of a space-time region can be entirely described by a theory living on the boundary of this given region. The most studied case of this principle is the AdS/CFT correspondence, where the quantum fluctuations of an asymptotically AdS space are described by a conformal field theory living at spatial infinity, invariant under the Virasoro group. The philosophy applied in this thesis differs from the AdS/CFT case. I focus on the case of quasi-local holography, i.e. for a bounded region of space-time with a boundary at a finite distance. The objective is to clarify the bulk-boundary relation in quantum gravity described by the Ponzano-Regge model, defining a model for 3D gravity via a discrete path integral. I present the first perturbative and exact computations of the Ponzano-Regge amplitude on a torus with a 2D boundary state. After the presentation of the general framework for the 3D amplitude in terms of the 2D boundary state, I consider the 2D torus case, with application in the study of the thermodynamics of the BTZ black hole. First, the 2D boundary is described by a coherent spin network state in the semi-classical regime. The stationary phase approximation allows to recover in the asymptotic limit the usual amplitude for 3D quantum gravity as the character of the symmetry of asymptotically flat gravity, the BMS group. Then I introduce a new type of coherent boundary state, which allows an exact evaluation of the amplitude for 3D quantum gravity. I obtain a complex regularization of the BMS character. The possibility of this exact computation suggests the existence of a (quasi)-integrable structure, linked to the symmetries of 3D quantum gravity with 2D finite boundary.
We push forward the investigation of holographic dualities in 3D quantum gravity formulated as a topological quantum field theory, studying the correspondence between boundary and bulk structures. Working with the Ponzano-Regge topological state-sum model defining an exact discretization of 3d quantum gravity, we analyze how the partition function for a solid twisted torus depends on the boundary quantum state. This configuration is relevant to the AdS${}_{3}$/CFT${}_{2}$ correspondence. We introduce boundary spin network states with coherent superposition of spins on a square lattice on the boundary surface. This allows for the first exact analytical calculation of Ponzano-Regge amplitudes with extended 2D boundary (beyond the single tetrahedron). We get a regularized finite truncation of the BMS character formula obtained from the one-loop perturbative quantization of 3D gravity. This hints towards the existence of an underlying symmetry and the integrability of the theory for finite boundary at the quantum level for coherent boundary spin network states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا