Do you want to publish a course? Click here

The Ponzano-Regge cylinder and Propagator for 3d quantum gravity

69   0   0.0 ( 0 )
 Added by Etera R. Livine
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the propagator of 3d quantum gravity, formulated as a discrete topological path integral. We define it as the Ponzano-Regge amplitude of the solid cylinder swept by a 2d disk evolving in time. Quantum states for a 2d disk live in the tensor products of N spins, where N is the number of holonomy insertions connecting to the disk boundary. We formulate the cylindric amplitude in terms of a transfer matrix and identify its eigen-modes in terms of spin recoupling. We show that the propagator distinguishes the subspaces with different total spin and may select the vanishing total spin sector at late time depending on the chosen cylinder boundary data. We discuss applications to quantum circuits and the possibility of experimental simulations of this 3d quantum gravity propagator.



rate research

Read More

We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limit while the boundary state functional remains quantum-mechanical. The properties of the resulting boundary theory are discussed.
This is the first of a series of papers dedicated to the study of the partition function of three-dimensional quantum gravity on the twisted solid torus with the aim to deepen our understanding of holographic dualities from a non-perturbative quantum gravity perspective. Our aim is to compare the Ponzano-Regge model for non-perturbative three-dimensional quantum gravity with the previous perturbative calculations of this partition function. We begin by reviewing the results obtained in the past ten years via a wealth of different approaches, and then introduce the Ponzano--Regge model in a self-contained way. Thanks to the topological nature of three-dimensional quantum gravity we can solve exactly for the bulk degrees of freedom and identify dual boundary theories which depend on the choice of boundary states, that can also describe finite, non-asymptotic boundaries. This series of papers aims precisely at the investigation of the role played by the different quantum boundary conditions leading to different boundary theories. Here, we will describe the spin network boundary states for the Ponzano-Regge model on the twisted torus and derive the general expression for the corresponding partition functions. We identify a class of boundary states describing a tessellation with maximally fuzzy squares for which the partition function can be explicitly evaluated. In the limit case of a large, but finely discretized, boundary we find a dependence on the Dehn twist angle characteristic for the BMS3 character. We furthermore show how certain choices of boundary states lead to known statistical models as dual field theories-but with a twist.
One of the most important mathematical tools necessary for Quantum Field Theory calculations is the field propagator. Applications are always done in terms of plane waves and although this has furnished many magnificent results, one may still be allowed to wonder what is the form of the most general propagator that can be written. In the present paper, by exploiting what is called polar form, we find the most general propagator in the case of spinors, whether regular or singular, and we give a general discussion in the case of vectors.
We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $mathcal{N} = 1$ supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ and review its applications to Liouville gravity. We then derive the corresponding matrix element for $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$ and apply it to explain structural features of $mathcal{N} = 1$ Liouville supergravity. We show that this matrix element has the following properties: (1) its $qto 1$ limit is the classical $text{OSp}^+(1|2, mathbb{R})$ Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $mathcal{N} = 1$ Liouville supergravity, and (3) it leads to $3j$-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $mathcal{N} = 1$ Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ or the quantum supergroup $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$.
We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا