No Arabic abstract
The goal of the article is to develop the approach of substationarity to spatial point processes (SPPs). Substationarity is a new concept, which has never been studied in the literature. It means that the distribution of SPPs can only be invariant under location shifts within a linear subspace of the domain. Theoretically, substationarity is a concept between stationariy and nonstationarity, but it belongs to nonstationarity. To formally propose the approach, the article provides the definition of substationarity and an estimation method for the first-order intensity function. As the linear subspace may be unknown, it recommends using a parametric way to estimate the linear subspace and a nonparametric way to estimate the first-order intensity function, indicating that it is a semiparametric approach. The simulation studies show that both the estimators of the linear subspace and the first-order intensity function are reliable. In an application to a forest wildfire data set, the article concludes that substationarity of wildfire occurrences may be assumed along the longitude, indicating that latitude is a more important factor than longitude in forest wildfire studies.
Estimating the first-order intensity function in point pattern analysis is an important problem, and it has been approached so far from different perspectives: parametrically, semiparametrically or nonparametrically. Our approach is close to a semiparametric one. Motivated by eye-movement data, we introduce a convolution type model where the log-intensity is modelled as the convolution of a function $beta(cdot)$, to be estimated, and a single spatial covariate (the image an individual is looking at for eye-movement data). Based on a Fourier series expansion, we show that the proposed model is related to the log-linear model with infinite number of coefficients, which correspond to the spectral decomposition of $beta(cdot)$. After truncation, we estimate these coefficients through a penalized Poisson likelihood and prove infill asymptotic results for a large class of spatial point processes. We illustrate the efficiency of the proposed methodology on simulated data and real data.
This paper presents the first general (supervised) statistical learning framework for point processes in general spaces. Our approach is based on the combination of two new concepts, which we define in the paper: i) bivariate innovations, which are measures of discrepancy/prediction-accuracy between two point processes, and ii) point process cross-validation (CV), which we here define through point process thinning. The general idea is to carry out the fitting by predicting CV-generated validation sets using the corresponding training sets; the prediction error, which we minimise, is measured by means of bivariate innovations. Having established various theoretical properties of our bivariate innovations, we study in detail the case where the CV procedure is obtained through independent thinning and we apply our statistical learning methodology to three typical spatial statistical settings, namely parametric intensity estimation, non-parametric intensity estimation and Papangelou conditional intensity fitting. Aside from deriving theoretical properties related to these cases, in each of them we numerically show that our statistical learning approach outperforms the state of the art in terms of mean (integrated) squared error.
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat, our construction is a mathematical model of convolutional neural networks and is naturally invariant to translations and reflections. Our model replaces wavelets with Gabor-type measurements and therefore decouples the roles of scale and frequency. We show that, with suitably chosen nonlinearities, our measurements distinguish Poisson point processes from common self-similar processes, and separate different types of Poisson point processes based on the first and second moments of the arrival intensity $lambda(t)$, as well as the absolute moments of the charges associated to each point.
We introduce the notion of intensity reweighted moment pseudostationary point processes on linear networks. Based on arbitrary general regular linear network distances, we propose geometrically correct
Learning the latent network structure from large scale multivariate point process data is an important task in a wide range of scientific and business applications. For instance, we might wish to estimate the neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To characterize the complex processes underlying the observed data, we propose a new and flexible class of nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent network structure using an efficient sparse least squares estimation approach. Using a thinning representation, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.