Do you want to publish a course? Click here

Inhomogeneous higher-order summary statistics for linear network point processes

62   0   0.0 ( 0 )
 Added by Ottmar Cronie
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce the notion of intensity reweighted moment pseudostationary point processes on linear networks. Based on arbitrary general regular linear network distances, we propose geometrically correct



rate research

Read More

We are concerned with nonparametric hypothesis testing of time series functionals. It is known that the popular autoregressive sieve bootstrap is, in general, not valid for statistics whose (asymptotic) distribution depends on moments of order higher than two, irrespective of whether the data come from a linear time series or a nonlinear one. Inspired by nonlinear system theory we circumvent this non-validity by introducing a higher-order bootstrap scheme based on the Volterra series representation of the process. In order to estimate coefficients of such a representation efficiently, we rely on the alternative formulation of Volterra operators in reproducing kernel Hilbert space. We perform polynomial kernel regression which scales linearly with the input dimensionality and is independent of the degree of nonlinearity. We illustrate the applicability of the suggested Volterra-representation-based bootstrap procedure in a simulation study where we consider strictly stationary linear and nonlinear processes.
Learning the latent network structure from large scale multivariate point process data is an important task in a wide range of scientific and business applications. For instance, we might wish to estimate the neuronal functional connectivity network based on spiking times recorded from a collection of neurons. To characterize the complex processes underlying the observed data, we propose a new and flexible class of nonstationary Hawkes processes that allow both excitatory and inhibitory effects. We estimate the latent network structure using an efficient sparse least squares estimation approach. Using a thinning representation, we establish concentration inequalities for the first and second order statistics of the proposed Hawkes process. Such theoretical results enable us to establish the non-asymptotic error bound and the selection consistency of the estimated parameters. Furthermore, we describe a least squares loss based statistic for testing if the background intensity is constant in time. We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
Bayesian likelihood-free methods implement Bayesian inference using simulation of data from the model to substitute for intractable likelihood evaluations. Most likelihood-free inference methods replace the full data set with a summary statistic before performing Bayesian inference, and the choice of this statistic is often difficult. The summary statistic should be low-dimensional for computational reasons, while retaining as much information as possible about the parameter. Using a recent idea from the interpretable machine learning literature, we develop some regression-based diagnostic methods which are useful for detecting when different parts of a summary statistic vector contain conflicting information about the model parameters. Conflicts of this kind complicate summary statistic choice, and detecting them can be insightful about model deficiencies and guide model improvement. The diagnostic methods developed are based on regression approaches to likelihood-free inference, in which the regression model estimates the posterior density using summary statistics as features. Deletion and imputation of part of the summary statistic vector within the regression model can remove conflicts and approximate posterior distributions for summary statistic subsets. A larger than expected change in the estimated posterior density following deletion and imputation can indicate a conflict in which inferences of interest are affected. The usefulness of the new methods is demonstrated in a number of real examples.
129 - Fabrizio Montesi 2018
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session types and propositions in linear logic. Desirable properties such as type preservation under reductions and progress come for free from the metatheory of linear logic. We contribute to this research line by extending CP with code mobility. We generalise classical linear logic to capture higher-order (linear) reasoning on proofs, which yields a logical reconstruction of (a variant of) the Higher-Order pi-calculus (HOpi). The resulting calculus is called Classical Higher-Order Processes (CHOP). We explore the metatheory of CHOP, proving that its semantics enjoys type preservation and progress (terms do not get stuck). We also illustrate the expressivity of CHOP through examples, derivable syntax sugar, and an extension to multiparty sessions. Lastly, we define a translation from CHOP to CP, which encodes mobility of process code into reference passing.
This paper presents the first general (supervised) statistical learning framework for point processes in general spaces. Our approach is based on the combination of two new concepts, which we define in the paper: i) bivariate innovations, which are measures of discrepancy/prediction-accuracy between two point processes, and ii) point process cross-validation (CV), which we here define through point process thinning. The general idea is to carry out the fitting by predicting CV-generated validation sets using the corresponding training sets; the prediction error, which we minimise, is measured by means of bivariate innovations. Having established various theoretical properties of our bivariate innovations, we study in detail the case where the CV procedure is obtained through independent thinning and we apply our statistical learning methodology to three typical spatial statistical settings, namely parametric intensity estimation, non-parametric intensity estimation and Papangelou conditional intensity fitting. Aside from deriving theoretical properties related to these cases, in each of them we numerically show that our statistical learning approach outperforms the state of the art in terms of mean (integrated) squared error.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا