Do you want to publish a course? Click here

Magnetometry with low resistance proximity Josephson junction

74   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) built upon a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about 55 nA/Phi_0 in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. The device can implement a low-dissipation SQUIPT, improving by up to two orders of magnitude compared to a conventional device based on an Al-Cu-Al SNS junction and an Al tunnel probe (Al-SQUIPT).



rate research

Read More

We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously that the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction.
We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, temperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.
We couple a proximity Josephson junction to a Joule-heated normal metal film and measure its electron temperature under steady state and nonequilibrium conditions. With a timed sequence of heating and temperature probing pulses, we are able to monitor its electron temperature in nonequilibrium with effectively zero back-action from the temperature measurement in the form of additional dissipation or thermal conductance. The experiments demonstrate the possibility of using a fast proximity Josephson junction thermometer for studying thermal transport in mesoscopic systems and for calorimetry.
140 - M. Zgirski , M. Foltyn , A. Savin 2017
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable of delivering unprecedented temporal resolution. We employ the thermometer to measure dynamic temperature of electrons in a long superconducting wire relaxing to the bath temperature after application of the heating pulse. Our measurement delivers nanosecond resolution thus providing the proof-of-concept of the fastest-todate all-solid-state thermometry. Our method improves the state-of-the-art temporal resolution of mesoscopic thermometry by at least two orders of magnitude, extending temporal resolution of existing experiments and introducing new possibilities for ultra-sensitive calorimeters and radiation detectors.
We theoretically study the Josephson effect in a superconductor/normal metal/superconductor ({it S}/{it N}/{it S}) Josephson junction composed of $s$-wave {it S}s with {it N} which is sandwiched by two ferromagnetic insulators ({it F}s), forming a spin valve, in the vertical direction of the junction. We show that the 0-$pi$ transition of the Josephson critical current occurs with increasing the thickness of {it N} along the junction. This transition is due to the magnetic proximity effect (MPE) which induces ferromagnetic magnetization in the {it N}. Moreover, we find that, even for fixed thickness of {it N}, the proposed Josephson junction with the spin valve can be switched from $pi$ to 0 states and vice versa by varying the magnetization configuration (parallel or antiparallel) of two {it F}s. We also examine the effect of spin-orbit scattering on the Josephson critical current and argue that the 0-$pi$ transition found here can be experimentally observed within the current nanofabrication techniques, thus indicating a promising potential of this junction as a 0-$pi$ switching device operated reversibly with varying the magnetic configuration in the spin valve by, e.g., applying an external magnetic field. %with the magnetization configuration in the spin valve. Our results not only provide possible applications in superconducting electronics but also suggest the importance of a fundamental concept of MPE in nanostructures of multilayer {it N}/{it F} systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا