Do you want to publish a course? Click here

Fast thermometry with a proximity Josephson junction

91   0   0.0 ( 0 )
 Added by Libin Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We couple a proximity Josephson junction to a Joule-heated normal metal film and measure its electron temperature under steady state and nonequilibrium conditions. With a timed sequence of heating and temperature probing pulses, we are able to monitor its electron temperature in nonequilibrium with effectively zero back-action from the temperature measurement in the form of additional dissipation or thermal conductance. The experiments demonstrate the possibility of using a fast proximity Josephson junction thermometer for studying thermal transport in mesoscopic systems and for calorimetry.

rate research

Read More

140 - M. Zgirski , M. Foltyn , A. Savin 2017
We demonstrate a novel approach to thermometry at the nanoscale exploiting a superconducting weak link. Such a weak link probed with nanosecond current pulses serves as a temperature sensing element and, due to the fast inherent dynamics, is capable of delivering unprecedented temporal resolution. We employ the thermometer to measure dynamic temperature of electrons in a long superconducting wire relaxing to the bath temperature after application of the heating pulse. Our measurement delivers nanosecond resolution thus providing the proof-of-concept of the fastest-todate all-solid-state thermometry. Our method improves the state-of-the-art temporal resolution of mesoscopic thermometry by at least two orders of magnitude, extending temporal resolution of existing experiments and introducing new possibilities for ultra-sensitive calorimeters and radiation detectors.
We describe the proximity effect in a short disordered metallic junction between three superconducting leads. Andreev bound states in the multi-terminal junction may cross the Fermi level. We reveal that for a quasi-continuous metallic density of states, crossings at the Fermi level manifest as closing of the proximity-induced gap. We calculate the local density of states for a wide range of transport parameters using quantum circuit theory. The gap closes inside an area of the space spanned by the superconducting phase differences. We derive an approximate analytic expression for the boundary of the area and compare it to the full numerical solution. The size of the area increases with the transparency of the junction and is sensitive to asymmetry. The finite density of states at zero energy is unaffected by electron-hole decoherence present in the junction, although decoherence is important at higher energies. Our predictions can be tested using tunneling transport spectroscopy. To encourage experiments, we calculate the current-voltage characteristic in a typical measurement setup. We show how the structure of the local density of states can be mapped out from the measurement.
We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) built upon a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about 55 nA/Phi_0 in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. The device can implement a low-dissipation SQUIPT, improving by up to two orders of magnitude compared to a conventional device based on an Al-Cu-Al SNS junction and an Al tunnel probe (Al-SQUIPT).
We demonstrate simultaneous measurements of DC transport properties and flux noise of a hybrid superconducting magnetometer based on the proximity effect (superconducting quantum interference proximity transistor, SQUIPT). The noise is probed by a cryogenic amplifier operating in the frequency range of a few MHz. In our non-optimized device, we achieve minimum flux noise $sim 4;muPhi_0/Hz^{1/2}$, set by the shot noise of the probe tunnel junction. The flux noise performance can be improved by further optimization of the SQUIPT parameters, primarily minimization of the proximity junction length and cross section. Furthermore, the experiment demonstrates that the setup can be used to investigate shot noise in other nonlinear devices with high impedance. This technique opens the opportunity to measure sensitive magnetometers including SQUIPT devices with very low dissipation.
Experiments on planar Josephson junction architectures have recently been shown to provide an alternative way of creating topological superconductors hosting accessible Majorana modes. These zero-energy modes can be found at the ends of a one-dimensional channel in the junction of a two-dimensional electron gas (2DEG) proximitized by two spatially separated superconductors. The channel, which is below the break between the superconductors, is not in direct contact with the superconducting leads, so that proximity coupling is expected to be weaker and less well-controlled than in the simple nanowire configuration widely discussed in the literature. This provides a strong incentive for this paper which investigates the nature of proximitization in these Josephson architectures. At a microscopic level we demonstrate how and when it can lead to topological phases. We do so by going beyond simple tunneling models through solving self-consistently the Bogoliubov-de Gennes equations of a heterostructure multicomponent system involving two spatially separated $s$-wave superconductors in contact with a normal Rashba spin-orbit-coupled 2DEG. Importantly, within our self-consistent theory we present ways of maximizing the proximity-induced superconducting gap by studying the effect of the Rashba spin-orbit coupling, chemical potential mismatch between the superconductor and 2DEG, and sample geometry on the gap. Finally, we note (as in experiment) a Fulde-Ferrell-Larkin-Ovchinnikov phase is also found to appear in the 2DEG channel, albeit under circumstances which are not ideal for topological superconducting phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا