Do you want to publish a course? Click here

Deep Abstract Q-Networks

66   0   0.0 ( 0 )
 Added by Melrose Roderick
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We examine the problem of learning and planning on high-dimensional domains with long horizons and sparse rewards. Recent approaches have shown great successes in many Atari 2600 domains. However, domains with long horizons and sparse rewards, such as Montezumas Revenge and Venture, remain challenging for existing methods. Methods using abstraction (Dietterich 2000; Sutton, Precup, and Singh 1999) have shown to be useful in tackling long-horizon problems. We combine recent techniques of deep reinforcement learning with existing model-based approaches using an expert-provided state abstraction. We construct toy domains that elucidate the problem of long horizons, sparse rewards and high-dimensional inputs, and show that our algorithm significantly outperforms previous methods on these domains. Our abstraction-based approach outperforms Deep Q-Networks (Mnih et al. 2015) on Montezumas Revenge and Venture, and exhibits backtracking behavior that is absent from previous methods.



rate research

Read More

Reinforcement learning (RL) algorithms have made huge progress in recent years by leveraging the power of deep neural networks (DNN). Despite the success, deep RL algorithms are known to be sample inefficient, often requiring many rounds of interaction with the environments to obtain satisfactory performance. Recently, episodic memory based RL has attracted attention due to its ability to latch on good actions quickly. In this paper, we present a simple yet effective biologically inspired RL algorithm called Episodic Memory Deep Q-Networks (EMDQN), which leverages episodic memory to supervise an agent during training. Experiments show that our proposed method can lead to better sample efficiency and is more likely to find good policies. It only requires 1/5 of the interactions of DQN to achieve many state-of-the-art performances on Atari games, significantly outperforming regular DQN and other episodic memory based RL algorithms.
Thompson sampling is a well-known approach for balancing exploration and exploitation in reinforcement learning. It requires the posterior distribution of value-action functions to be maintained; this is generally intractable for tasks that have a high dimensional state-action space. We derive a variational Thompson sampling approximation for DQNs which uses a deep network whose parameters are perturbed by a learned variational noise distribution. We interpret the successful NoisyNets method cite{fortunato2018noisy} as an approximation to the variational Thompson sampling method that we derive. Further, we propose State Aware Noisy Exploration (SANE) which seeks to improve on NoisyNets by allowing a non-uniform perturbation, where the amount of parameter perturbation is conditioned on the state of the agent. This is done with the help of an auxiliary perturbation module, whose output is state dependent and is learnt end to end with gradient descent. We hypothesize that such state-aware noisy exploration is particularly useful in problems where exploration in certain textit{high risk} states may result in the agent failing badly. We demonstrate the effectiveness of the state-aware exploration method in the off-policy setting by augmenting DQNs with the auxiliary perturbation module.
388 - Andy Su , Jayden Ooi , Tyler Lu 2020
Delusional bias is a fundamental source of error in approximate Q-learning. To date, the only techniques that explicitly address delusion require comprehensive search using tabular value estimates. In this paper, we develop efficient methods to mitigate delusional bias by training Q-approximators with labels that are consistent with the underlying greedy policy class. We introduce a simple penalization scheme that encourages Q-labels used across training batches to remain (jointly) consistent with the expressible policy class. We also propose a search framework that allows multiple Q-approximators to be generated and tracked, thus mitigating the effect of premature (implicit) policy commitments. Experimental results demonstrate that these methods can improve the performance of Q-learning in a variety of Atari games, sometimes dramatically.
The research on deep reinforcement learning which estimates Q-value by deep learning has been attracted the interest of researchers recently. In deep reinforcement learning, it is important to efficiently learn the experiences that an agent has collected by exploring environment. We propose NEC2DQN that improves learning speed of a poor sample efficiency algorithm such as DQN by using good one such as NEC at the beginning of learning. We show it is able to learn faster than Double DQN or N-step DQN in the experiments of Pong.
85 - Weichao Li , Fuxian Huang , Xi Li 2018
A critical and challenging problem in reinforcement learning is how to learn the state-action value function from the experience replay buffer and simultaneously keep sample efficiency and faster convergence to a high quality solution. In prior works, transitions are uniformly sampled at random from the replay buffer or sampled based on their priority measured by temporal-difference (TD) error. However, these approaches do not fully take into consideration the intrinsic characteristics of transition distribution in the state space and could result in redundant and unnecessary TD updates, slowing down the convergence of the learning procedure. To overcome this problem, we propose a novel state distribution-aware sampling method to balance the replay times for transitions with skew distribution, which takes into account both the occurrence frequencies of transitions and the uncertainty of state-action values. Consequently, our approach could reduce the unnecessary TD updates and increase the TD updates for state-action value with more uncertainty, making the experience replay more effective and efficient. Extensive experiments are conducted on both classic control tasks and Atari 2600 games based on OpenAI gym platform and the experimental results demonstrate the effectiveness of our approach in comparison with the standard DQN approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا