Do you want to publish a course? Click here

State Distribution-aware Sampling for Deep Q-learning

86   0   0.0 ( 0 )
 Added by Weichao Li
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

A critical and challenging problem in reinforcement learning is how to learn the state-action value function from the experience replay buffer and simultaneously keep sample efficiency and faster convergence to a high quality solution. In prior works, transitions are uniformly sampled at random from the replay buffer or sampled based on their priority measured by temporal-difference (TD) error. However, these approaches do not fully take into consideration the intrinsic characteristics of transition distribution in the state space and could result in redundant and unnecessary TD updates, slowing down the convergence of the learning procedure. To overcome this problem, we propose a novel state distribution-aware sampling method to balance the replay times for transitions with skew distribution, which takes into account both the occurrence frequencies of transitions and the uncertainty of state-action values. Consequently, our approach could reduce the unnecessary TD updates and increase the TD updates for state-action value with more uncertainty, making the experience replay more effective and efficient. Extensive experiments are conducted on both classic control tasks and Atari 2600 games based on OpenAI gym platform and the experimental results demonstrate the effectiveness of our approach in comparison with the standard DQN approach.



rate research

Read More

Thompson sampling is a well-known approach for balancing exploration and exploitation in reinforcement learning. It requires the posterior distribution of value-action functions to be maintained; this is generally intractable for tasks that have a high dimensional state-action space. We derive a variational Thompson sampling approximation for DQNs which uses a deep network whose parameters are perturbed by a learned variational noise distribution. We interpret the successful NoisyNets method cite{fortunato2018noisy} as an approximation to the variational Thompson sampling method that we derive. Further, we propose State Aware Noisy Exploration (SANE) which seeks to improve on NoisyNets by allowing a non-uniform perturbation, where the amount of parameter perturbation is conditioned on the state of the agent. This is done with the help of an auxiliary perturbation module, whose output is state dependent and is learnt end to end with gradient descent. We hypothesize that such state-aware noisy exploration is particularly useful in problems where exploration in certain textit{high risk} states may result in the agent failing badly. We demonstrate the effectiveness of the state-aware exploration method in the off-policy setting by augmenting DQNs with the auxiliary perturbation module.
The fundamental assumption of reinforcement learning in Markov decision processes (MDPs) is that the relevant decision process is, in fact, Markov. However, when MDPs have rich observations, agents typically learn by way of an abstract state representation, and such representations are not guaranteed to preserve the Markov property. We introduce a novel set of conditions and prove that they are sufficient for learning a Markov abstract state representation. We then describe a practical training procedure that combines inverse model estimation and temporal contrastive learning to learn an abstraction that approximately satisfies these conditions. Our novel training objective is compatible with both online and offline training: it does not require a reward signal, but agents can capitalize on reward information when available. We empirically evaluate our approach on a visual gridworld domain and a set of continuous control benchmarks. Our approach learns representations that capture the underlying structure of the domain and lead to improved sample efficiency over state-of-the-art deep reinforcement learning with visual features -- often matching or exceeding the performance achieved with hand-designed compact state information.
388 - Andy Su , Jayden Ooi , Tyler Lu 2020
Delusional bias is a fundamental source of error in approximate Q-learning. To date, the only techniques that explicitly address delusion require comprehensive search using tabular value estimates. In this paper, we develop efficient methods to mitigate delusional bias by training Q-approximators with labels that are consistent with the underlying greedy policy class. We introduce a simple penalization scheme that encourages Q-labels used across training batches to remain (jointly) consistent with the expressible policy class. We also propose a search framework that allows multiple Q-approximators to be generated and tracked, thus mitigating the effect of premature (implicit) policy commitments. Experimental results demonstrate that these methods can improve the performance of Q-learning in a variety of Atari games, sometimes dramatically.
Deep Q-Learning is an important reinforcement learning algorithm, which involves training a deep neural network, called Deep Q-Network (DQN), to approximate the well-known Q-function. Although wildly successful under laboratory conditions, serious gaps between theory and practice as well as a lack of formal guarantees prevent its use in the real world. Adopting a dynamical systems perspective, we provide a theoretical analysis of a popular version of Deep Q-Learning under realistic and verifiable assumptions. More specifically, we prove an important result on the convergence of the algorithm, characterizing the asymptotic behavior of the learning process. Our result sheds light on hitherto unexplained properties of the algorithm and helps understand empirical observations, such as performance inconsistencies even after training. Unlike previous theories, our analysis accommodates state Markov processes with multiple stationary distributions. In spite of the focus on Deep Q-Learning, we believe that our theory may be applied to understand other deep learning algorithms
Reinforcement learning (RL) algorithms have made huge progress in recent years by leveraging the power of deep neural networks (DNN). Despite the success, deep RL algorithms are known to be sample inefficient, often requiring many rounds of interaction with the environments to obtain satisfactory performance. Recently, episodic memory based RL has attracted attention due to its ability to latch on good actions quickly. In this paper, we present a simple yet effective biologically inspired RL algorithm called Episodic Memory Deep Q-Networks (EMDQN), which leverages episodic memory to supervise an agent during training. Experiments show that our proposed method can lead to better sample efficiency and is more likely to find good policies. It only requires 1/5 of the interactions of DQN to achieve many state-of-the-art performances on Atari games, significantly outperforming regular DQN and other episodic memory based RL algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا