Do you want to publish a course? Click here

Galaxy Zoo: CANDELS Barred Disks and Bar Fractions

154   0   0.0 ( 0 )
 Added by Brooke Simmons
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation of bars in disk galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in disks decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature disks should be extremely rare. Here we report the discovery of strong barred structures in massive disk galaxies at z ~ 1.5 in deep rest-frame optical images from CANDELS. From within a sample of 876 disk galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a sub-sample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5< z < 2 (f_bar = 10.7 +6.3 -3.5% after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disk galaxies have evolved over the last 11 billion years.



rate research

Read More

We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $sim$3,500 nearby ($z<0.06$) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions which include a bar component. With detailed structural analysis we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sersic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sersic indices consistent with being pseudobulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudobulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.
The challenge of consistent identification of internal structure in galaxies - in particular disc galaxy components like spiral arms, bars, and bulges - has hindered our ability to study the physical impact of such structure across large samples. In this paper we present Galaxy Zoo: 3D (GZ: 3D) a crowdsourcing project built on the Zooniverse platform which we used to create spatial pixel (spaxel) maps that identify galaxy centres, foreground stars, galactic bars and spiral arms for 29831 galaxies which were potential targets of the MaNGA survey (Mapping Nearby Galaxies at Apache Point Observatory, part of the fourth phase of the Sloan Digital Sky Surveys or SDSS-IV), including nearly all of the 10,010 galaxies ultimately observed. Our crowd-sourced visual identification of asymmetric, internal structures provides valuable insight on the evolutionary role of non-axisymmetric processes that is otherwise lost when MaNGA data cubes are azimuthally averaged. We present the publicly available GZ:3D catalog alongside validation tests and example use cases. These data may in the future provide a useful training set for automated identification of spiral arm features. As an illustration, we use the spiral masks in a sample of 825 galaxies to measure the enhancement of star formation spatially linked to spiral arms, which we measure to be a factor of three over the background disc, and how this enhancement increases with radius.
The Galaxy Zoo (GZ) project has provided quantitative visual morphologies for over a million galaxies, and has been part of a reinvigoration of interest in the morphologies of galaxies and what they reveal about galaxy evolution. Morphological information collected by GZ has shown itself to be a powerful tool for studying galaxy evolution, and GZ continues to collect classifications - currently serving imaging from DECaLS in its main site, and running a variety of related projects hosted by the Zooniverse; the citizen science platform which came out of the early success of GZ. I highlight some of the results from the last twelve years, with a particular emphasis on linking morphology and dynamics, look forward to future projects in the GZ family, and provide a quick start guide for how you can easily make use of citizen science techniques to analysis your own large and complex data sets.
160 - Karen L. Masters 2012
We study the observed correlation between atomic gas content and the likelihood of hosting a large scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies HI content from the ALFALFA blind HI survey. Our main result is that the bar fraction is significantly lower among gas rich disc galaxies than gas poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation, and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate mass disc galaxies.
249 - E. Athanassoula 2013
`Conspiracy between the dark and the baryonic mater prohibits an unambiguous decomposition of disc galaxy rotation curves into the corresponding components. Several methods have been proposed to counter this difficulty, but their results are widely discrepant. In this paper, I revisit one of these methods, which relies on the relation between the halo density and the decrease of the bar pattern speed. The latter is routinely characterised by the ratio ${cal R}$ of the corotation radius $R_{CR}$ to the bar length $L_b$, ${cal R}=R_{CR}/L_b$. I use a set of $N$-body+SPH simulations, including sub-grid physics, whose initial conditions cover a range of gas fractions and halo shapes. The models, by construction, have roughly the same azimuthally averaged circular velocity curve and halo density and they are all submaximal, i.e. according to previous works they are expected to have all roughly the same ${cal R}$ value, well outside the fast bar range (1.2 $pm$ 0.2). Contrary to these expectations, however, these simulations end up having widely different ${cal R}$ values, either within the fast bar range, or well outside it. This shows that the ${cal R}$ value can not constrain the halo density, nor determine whether galactic discs are maximal or submaximal. I argue that this is true even for early type discs (S0s and Sas).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا