No Arabic abstract
The possibility of hybridizing collective electronic motion with mid-infrared (mid-IR) light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene and its heterostructures have attracted particular attention because the absence of an energy gap allows for plasmon polaritons to be continuously tuned. Here, we introduce black phosphorus (BP) as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, BP is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron-hole pairs by ultrashort near-infrared (near-IR) pulses. We design a SiO$_2$/BP/SiO$_2$ heterostructure in which the surface phonon modes of the SiO$_2$ layers hybridize with surface plasmon modes in BP that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO$_2$, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron-hole plasma, coherent polariton waves can be launched by a broadband mid-IR pulse coupled to the tip of a scattering-type scanning near-field optical microscopy (s-SNOM) setup. The scattered radiation allows us to trace the new hybrid mode in time, energy, and space. We find that the surface mode can be activated within ~50 fs and disappears within 5 ps, as the electron-hole pairs in BP recombine. The excellent switching contrast and switching speed, the coherence properties, and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.
We study the origin of photocurrent generated in doped multilayer BP photo-transistors, and find that it is dominated by thermally driven thermoelectric and bolometric processes. The experimentally observed photocurrent polarities are consistent with photo-thermal processes. The photo-thermoelectric current can be generated up to a $mu$m away from the contacts, indicating a long thermal decay length. With an applied source-drain bias, a photo-bolometric current is generated across the whole device, overwhelming the photo-thermoelectric contribution at a moderate bias. The photo-responsivity in the multilayer BP device is two orders of magnitude larger than that observed in graphene.
Femtosecond laser excitation of FeRh/Pt bilayers launches an ultrafast pulse of electric photocurrent in the Pt-layer and thus results in emission of electromagnetic radiation in the THz spectral range. Analysis of the THz emission as a function of polarization of the femtosecond laser pulse, external magnetic field, sample temperature and sample orientation shows that photocurrent can emerge due to vertical spin pumping and photo-induced inverse spin-orbit torque at the FeRh/Pt interface. The vertical spin pumping from FeRh to Pt does not depend on the polarization of light and originates from ultrafast laser-induced demagnetization of the ferromagnetic phase of FeRh. The photo-induced inverse spin-orbit torque at the FeRh/Pt interface can be described in terms of a helicity-dependent effect of circularly polarized light on the magnetization of the ferromagnetic FeRh and subsequent generation of a photocurrent.
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2/Vs in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent band gap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of the p-doping. We also compare these native defects to those induced by air exposure and show they are distinct and likely more important for control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially-available materials, and call for better control of vacancy defects.
We propose and evaluate the heterostructure based on the graphene-layer (GL) with the lateral electron injection from the side contacts and the hole vertical injection via the black phosphorus layer (PL) (p$^+$PL-PL-GL heterostructure). Due to a relatively small energy of the holes injected from the PL into the GL (about 100 meV, smaller than the energy of optical phonons in the GL which is about 200 meV), the hole injection can effectively cool down the two-dimensional electron-hole plasma in the GL. This simplifies the realization of the interband population inversion and the achievement of the negative dynamic conductivity in the terahertz (THz) frequency range enabling the amplification of the surface plasmon modes. The later can lead to the plasmon lasing. The conversion of the plasmons into the output radiation can be used for a new types of the THz sources.