Do you want to publish a course? Click here

Origin of photoresponse in black phosphorus photo-transistors

128   0   0.0 ( 0 )
 Added by Tony Low Dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the origin of photocurrent generated in doped multilayer BP photo-transistors, and find that it is dominated by thermally driven thermoelectric and bolometric processes. The experimentally observed photocurrent polarities are consistent with photo-thermal processes. The photo-thermoelectric current can be generated up to a $mu$m away from the contacts, indicating a long thermal decay length. With an applied source-drain bias, a photo-bolometric current is generated across the whole device, overwhelming the photo-thermoelectric contribution at a moderate bias. The photo-responsivity in the multilayer BP device is two orders of magnitude larger than that observed in graphene.



rate research

Read More

The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2/Vs in ambient conditions, which we attribute to the low defect density of the bP/POx interface.
Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to graphene$$s superior electron mobility. Previously it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage and therefore it was found to be difficult to disentangle these contributions in the previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.
The possibility of hybridizing collective electronic motion with mid-infrared (mid-IR) light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene and its heterostructures have attracted particular attention because the absence of an energy gap allows for plasmon polaritons to be continuously tuned. Here, we introduce black phosphorus (BP) as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, BP is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron-hole pairs by ultrashort near-infrared (near-IR) pulses. We design a SiO$_2$/BP/SiO$_2$ heterostructure in which the surface phonon modes of the SiO$_2$ layers hybridize with surface plasmon modes in BP that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO$_2$, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron-hole plasma, coherent polariton waves can be launched by a broadband mid-IR pulse coupled to the tip of a scattering-type scanning near-field optical microscopy (s-SNOM) setup. The scattered radiation allows us to trace the new hybrid mode in time, energy, and space. We find that the surface mode can be activated within ~50 fs and disappears within 5 ps, as the electron-hole pairs in BP recombine. The excellent switching contrast and switching speed, the coherence properties, and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.
Achieving good quality Ohmic contacts to van der Waals materials is a challenge, since at the interface between metal and van der Waals material, different conditions can occur, ranging from the presence of a large energy barrier between the two materials to the metallization of the layered material below the contacts. In black phosphorus (bP), a further challenge is its high reactivity to oxygen and moisture, since the presence of uncontrolled oxidation can substantially change the behavior of the contacts. In this study, we investigate the influence of the metal used for the contacts to bP against the variability between different flakes and different samples, using three of the most used metals as contacts: Chromium, Titanium, and Nickel. Using the transfer length method, from an analysis of ten devices, both at room temperature and at low temperature, Ni results to be the best metal for Ohmic contacts to bP, providing the lowest contact resistance and minimum scattering between different devices. Moreover, we investigate the gate dependence of the current-voltage characteristics of these devices. In the accumulation regime, we observe good linearity for all metals investigated.
The advent of black phosphorus field-effect transistors (FETs) has brought new possibilities in the study of two-dimensional (2D) electron systems. In a black phosphorus FET, the gate induces highly anisotropic 2D electron and hole gases. Although the 2D hole gas in black phosphorus has reached high carrier mobilities that led to the observation of the integer quantum Hall effect, the improvement in the sample quality of the 2D electron gas (2DEG) has however been only moderate; quantum Hall effect remained elusive. Here, we obtain high quality black phosphorus 2DEG by defining the 2DEG region with a prepatterned graphite local gate. The graphite local gate screens the impurity potential in the 2DEG. More importantly, it electrostatically defines the edge of the 2DEG, which facilitates the formation of well-defined edge channels in the quantum Hall regime. The improvements enable us to observe precisely quantized Hall plateaus in electron-doped black phosphorus FET. Magneto-transport measurements under high magnetic fields further revealed a large effective mass and an enhanced Lande g-factor, which points to strong electron-electron interaction in black phosphorus 2DEG. Such strong interaction may lead to exotic many-body quantum states in the fractional quantum Hall regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا