Do you want to publish a course? Click here

Catching Anomalous Distributed Photovoltaics: An Edge-based Multi-modal Anomaly Detection

93   0   0.0 ( 0 )
 Added by Yu Cheng
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

A significant challenge in energy system cyber security is the current inability to detect cyber-physical attacks targeting and originating from distributed grid-edge devices such as photovoltaics (PV) panels, smart flexible loads, and electric vehicles. We address this concern by designing and developing a distributed, multi-modal anomaly detection approach that can sense the health of the device and the electric power grid from the edge. This is realized by exploiting unsupervised machine learning algorithms on multiple sources of time-series data, fusing these multiple local observations and flagging anomalies when a deviation from the normal behavior is observed. We particularly focus on the cyber-physical threats to the distributed PVs that has the potential to cause local disturbances or grid instabilities by creating supply-demand mismatch, reverse power flow conditions etc. We use an open source power system simulation tool called GridLAB-D, loaded with real smart home and solar datasets to simulate the smart grid scenarios and to illustrate the impact of PV attacks on the power system. Various attacks targeting PV panels that create voltage fluctuations, reverse power flow etc were designed and performed. We observe that while individual unsupervised learning algorithms such as OCSVMs, Corrupt RF and PCA surpasses in identifying particular attack type, PCA with Convex Hull outperforms all algorithms in identifying all designed attacks with a true positive rate of 83.64% and an accuracy of 95.78%. Our key insight is that due to the heterogeneous nature of the distribution grid and the uncertainty in the type of the attack being launched, relying on single mode of information for defense can lead to increased false alarms and missed detection rates as one can design attacks to hide within those uncertainties and remain stealthy.



rate research

Read More

To achieve high-levels of autonomy, modern robots require the ability to detect and recover from anomalies and failures with minimal human supervision. Multi-modal sensor signals could provide more information for such anomaly detection tasks; however, the fusion of high-dimensional and heterogeneous sensor modalities remains a challenging problem. We propose a deep learning neural network: supervised variational autoencoder (SVAE), for failure identification in unstructured and uncertain environments. Our model leverages the representational power of VAE to extract robust features from high-dimensional inputs for supervised learning tasks. The training objective unifies the generative model and the discriminative model, thus making the learning a one-stage procedure. Our experiments on real field robot data demonstrate superior failure identification performance than baseline methods, and that our model learns interpretable representations. Videos of our results are available on our website: https://sites.google.com/illinois.edu/supervised-vae .
Anomaly detection is a critical problem in the manufacturing industry. In many applications, images of objects to be analyzed are captured from multiple perspectives which can be exploited to improve the robustness of anomaly detection. In this work, we build upon the deep support vector data description algorithm and address multi-perspective anomaly detection using three different fusion techniques, i.e., early fusion, late fusion, and late fusion with multiple decoders. We employ different augmentation techniques with a denoising process to deal with scarce one-class data, which further improves the performance (ROC AUC $= 80%$). Furthermore, we introduce the dices dataset, which consists of over 2000 grayscale images of falling dices from multiple perspectives, with 5% of the images containing rare anomalies (e.g., drill holes, sawing, or scratches). We evaluate our approach on the new dices dataset using images from two different perspectives and also benchmark on the standard MNIST dataset. Extensive experiments demonstrate that our proposed {multi-perspective} approach exceeds the state-of-the-art {single-perspective anomaly detection on both the MNIST and dices datasets}. To the best of our knowledge, this is the first work that focuses on addressing multi-perspective anomaly detection in images by jointly using different perspectives together with one single objective function for anomaly detection.
We address the problem of attack detection and isolation for a class of discrete-time nonlinear systems under (potentially unbounded) sensor attacks and measurement noise. We consider the case when a subset of sensors is subject to additive false data injection attacks. Using a bank of observers, each observer leading to an Input-to-State Stable (ISS) estimation error, we propose two algorithms for detecting and isolating sensor attacks. These algorithms make use of the ISS property of the observers to check whether the trajectories of observers are `consistent with the attack-free trajectories of the system. Simulations results are presented to illustrate the performance of the proposed algorithms.
The most common approach to mitigate the impact that the presence of malicious nodes has on the accuracy of decision fusion schemes consists in observing the behavior of the nodes over a time interval T and then removing the reports of suspect nodes from the fusion process. By assuming that some a-priori information about the presence of malicious nodes and their behavior is available, we show that the information stemming from the suspect nodes can be exploited to further improve the decision fusion accuracy. Specifically, we derive the optimum fusion rule and analyze the achievable performance for two specific cases. In the first case, the states of the nodes (corrupted or honest) are independent of each other and the fusion center knows only the probability that a node is malicious. In the second case, the exact number of corrupted nodes is fixed and known to the fusion center. We also investigate the optimum corruption strategy for the malicious nodes, showing that always reverting the local decision does not necessarily maximize the loss of performance at the fusion center.
80 - Yulin Zhu , Yuni Lai , Kaifa Zhao 2021
Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs as well as recent advances in graph mining techniques. These GAD tools, however, expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data. That is, attackers now can manipulate those relations (i.e., the structure of the graph) to allow some target nodes to evade detection. In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system termed OddBall. Specially, we formulate the attack against OddBall as a bi-level optimization problem, where the key technical challenge is to efficiently solve the problem in a discrete domain. We propose a novel attack method termed BinarizedAttack based on gradient descent. Comparing to prior arts, BinarizedAttack can better use the gradient information, making it particularly suitable for solving combinatorial optimization problems. Furthermore, we investigate the attack transferability of BinarizedAttack by employing it to attack other representation-learning-based GAD systems. Our comprehensive experiments demonstrate that BinarizedAttack is very effective in enabling target nodes to evade graph-based anomaly detection tools with limited attackers budget, and in the black-box transfer attack setting, BinarizedAttack is also tested effective and in particular, can significantly change the node embeddings learned by the GAD systems. Our research thus opens the door to studying a new type of attack against security analytic tools that rely on graph data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا