No Arabic abstract
Anomaly detection is a critical problem in the manufacturing industry. In many applications, images of objects to be analyzed are captured from multiple perspectives which can be exploited to improve the robustness of anomaly detection. In this work, we build upon the deep support vector data description algorithm and address multi-perspective anomaly detection using three different fusion techniques, i.e., early fusion, late fusion, and late fusion with multiple decoders. We employ different augmentation techniques with a denoising process to deal with scarce one-class data, which further improves the performance (ROC AUC $= 80%$). Furthermore, we introduce the dices dataset, which consists of over 2000 grayscale images of falling dices from multiple perspectives, with 5% of the images containing rare anomalies (e.g., drill holes, sawing, or scratches). We evaluate our approach on the new dices dataset using images from two different perspectives and also benchmark on the standard MNIST dataset. Extensive experiments demonstrate that our proposed {multi-perspective} approach exceeds the state-of-the-art {single-perspective anomaly detection on both the MNIST and dices datasets}. To the best of our knowledge, this is the first work that focuses on addressing multi-perspective anomaly detection in images by jointly using different perspectives together with one single objective function for anomaly detection.
Content delivery networks (CDNs) provide efficient content distribution over the Internet. CDNs improve the connectivity and efficiency of global communications, but their caching mechanisms may be breached by cyber-attackers. Among the security mechanisms, effective anomaly detection forms an important part of CDN security enhancement. In this work, we propose a multi-perspective unsupervised learning framework for anomaly detection in CDNs. In the proposed framework, a multi-perspective feature engineering approach, an optimized unsupervised anomaly detection model that utilizes an isolation forest and a Gaussian mixture model, and a multi-perspective validation method, are developed to detect abnormal behaviors in CDNs mainly from the client Internet Protocol (IP) and node perspectives, therefore to identify the denial of service (DoS) and cache pollution attack (CPA) patterns. Experimental results are presented based on the analytics of eight days of real-world CDN log data provided by a major CDN operator. Through experiments, the abnormal contents, compromised nodes, malicious IPs, as well as their corresponding attack types, are identified effectively by the proposed framework and validated by multiple cybersecurity experts. This shows the effectiveness of the proposed method when applied to real-world CDN data.
Within a large database G containing graphs with labeled nodes and directed, multi-edges; how can we detect the anomalous graphs? Most existing work are designed for plain (unlabeled) and/or simple (unweighted) graphs. We introduce CODETECT, the first approach that addresses the anomaly detection task for graph databases with such complex nature. To this end, it identifies a small representative set S of structural patterns (i.e., node-labeled network motifs) that losslessly compress database G as concisely as possible. Graphs that do not compress well are flagged as anomalous. CODETECT exhibits two novel building blocks: (i) a motif-based lossless graph encoding scheme, and (ii) fast memory-efficient search algorithms for S. We show the effectiveness of CODETECT on transaction graph databases from three different corporations, where existing baselines adjusted for the task fall behind significantly, across different types of anomalies and performance metrics.
To achieve high-levels of autonomy, modern robots require the ability to detect and recover from anomalies and failures with minimal human supervision. Multi-modal sensor signals could provide more information for such anomaly detection tasks; however, the fusion of high-dimensional and heterogeneous sensor modalities remains a challenging problem. We propose a deep learning neural network: supervised variational autoencoder (SVAE), for failure identification in unstructured and uncertain environments. Our model leverages the representational power of VAE to extract robust features from high-dimensional inputs for supervised learning tasks. The training objective unifies the generative model and the discriminative model, thus making the learning a one-stage procedure. Our experiments on real field robot data demonstrate superior failure identification performance than baseline methods, and that our model learns interpretable representations. Videos of our results are available on our website: https://sites.google.com/illinois.edu/supervised-vae .
This paper presents a novel framework for unsupervised anomaly detection on masked objects called ODDObjects, which stands for Out-of-Distribution Detection on Objects. ODDObjects is designed to detect anomalies of various categories using unsupervised autoencoders trained on COCO-style datasets. The method utilizes autoencoder-based image reconstruction, where high reconstruction error indicates the possibility of an anomaly. The framework extends previous work on anomaly detection with autoencoders, comparing state-of-the-art models trained on object recognition datasets. Various model architectures were compared, and experimental results show that memory-augmented deep convolutional autoencoders perform the best at detecting out-of-distribution objects.
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour. This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation. Herein, we review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems, which poses hard challenges in terms of information fusion, data volumes, data speed, and network/energy efficiency, to mention but the most pressing ones. In this context, anomaly detection is a particularly hard problem, given the need to find computing-energy accuracy trade-offs in a constrained environment. We taxonomize methods ranging from conventional techniques (statistical methods, time-series analysis, signal processing, etc.) to data-driven techniques (supervised learning, reinforcement learning, deep learning, etc.). We also look at the impact that different architectural environments (Cloud, Fog, Edge) can have on the sensors ecosystem. The review points to the most promising intelligent-sensing methods, and pinpoints a set of interesting open issues and challenges.