Do you want to publish a course? Click here

Optimum Fusion of Possibly Corrupted Reports for Distributed Detection in Multi-Sensor Networks

129   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The most common approach to mitigate the impact that the presence of malicious nodes has on the accuracy of decision fusion schemes consists in observing the behavior of the nodes over a time interval T and then removing the reports of suspect nodes from the fusion process. By assuming that some a-priori information about the presence of malicious nodes and their behavior is available, we show that the information stemming from the suspect nodes can be exploited to further improve the decision fusion accuracy. Specifically, we derive the optimum fusion rule and analyze the achievable performance for two specific cases. In the first case, the states of the nodes (corrupted or honest) are independent of each other and the fusion center knows only the probability that a node is malicious. In the second case, the exact number of corrupted nodes is fixed and known to the fusion center. We also investigate the optimum corruption strategy for the malicious nodes, showing that always reverting the local decision does not necessarily maximize the loss of performance at the fusion center.



rate research

Read More

We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error at the fusion center. When independent states are considered, the optimum fusion rule over a batch of observations has already been derived, however its complexity prevents its use in conjunction with large observation windows. In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good performance also in the case of dependent system states. By first focusing on the case of small observation windows, we use numerical simulations to show that the proposed scheme introduces a negligible increase of the decision error probability compared to the optimum fusion rule. We then analyse the performance of the new scheme when the FC make its decision by relying on long observation windows. We do so by considering both the case of independent and Markovian system states and show that the obtained performance are superior to those obtained with prior suboptimal schemes. As an additional result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to minimise the mutual information between the sequence system states and the reports submitted to the FC, rather than always flipping the local decision.
131 - Oliver Obst 2009
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a degradation remains undetected, the usefulness of a sensor network can be greatly reduced. We present an approach that learns spatio-temporal correlations between different sensors, and makes use of the learned model to detect misbehaving sensors by using distributed computation and only local communication between nodes. We introduce SODESN, a distributed recurrent neural network architecture, and a learning method to train SODESN for fault detection in a distributed scenario. Our approach is evaluated using data from different types of sensors and is able to work well even with less-than-perfect link qualities and more than 50% of failed nodes.
In this paper we investigate fusion rules for distributed detection in large random clustered-wireless sensor networks (WSNs) with a three-tier hierarchy; the sensor nodes (SNs), the cluster heads (CHs) and the fusion center (FC). The CHs collect the SNs local decisions and relay them to the FC that then fuses them to reach the ultimate decision. The SN-CH and the CH-FC channels suffer from additive white Gaussian noise (AWGN). In this context, we derive the optimal log-likelihood ratio (LLR) fusion rule, which turns out to be intractable. So, we develop a sub-optimal linear fusion rule (LFR) that weighs the clusters data according to both its local detection performance and the quality of the communication channels. In order to implement it, we propose an approximate maximum likelihood based LFR (LFR-aML), which estimates the required parameters for the LFR. We also derive Gaussian-tail upper bounds for the detection and false alarms probabilities for the LFR. Furthermore, an optimal CH transmission power allocation strategy is developed by solving the Karush-Kuhn-Tucker (KKT) conditions for the related optimization problem. Extensive simulations show that the LFR attains a detection performance near to that of the optimal LLR and confirms the validity of the proposed upper bounds. Moreover, when compared to equal power allocation, simulations show that our proposed power allocation strategy achieves a significant power saving at the expense of a small reduction in the detection performance.
We address the optimal transmit power allocation problem (from the sensor nodes (SNs) to the fusion center (FC)) for the decentralized detection of an unknown deterministic spatially uncorrelated signal which is being observed by a distributed wireless sensor network. We propose a novel fully distributed algorithm, in order to calculate the optimal transmit power allocation for each sensor node (SN) and the optimal number of quantization bits for the test statistic in order to match the channel capacity. The SNs send their quantized information over orthogonal uncorrelated channels to the FC which linearly combines them and makes a final decision. What makes this scheme attractive is that the SNs share with their neighbours just their individual transmit powers at the current states. As a result, the SN processing complexity is further reduced.
The problem of quickest change detection with communication rate constraints is studied. A network of wireless sensors with limited computation capability monitors the environment and sends observations to a fusion center via wireless channels. At an unknown time instant, the distributions of observations at all the sensor nodes change simultaneously. Due to limited energy, the sensors cannot transmit at all the time instants. The objective is to detect the change at the fusion center as quickly as possible, subject to constraints on false detection and average communication rate between the sensors and the fusion center. A minimax formulation is proposed. The cumulative sum (CuSum) algorithm is used at the fusion center and censoring strategies are used at the sensor nodes. The censoring strategies, which are adaptive to the CuSum statistic, are fed back by the fusion center. The sensors only send observations that fall into prescribed sets to the fusion center. This CuSum adaptive censoring (CuSum-AC) algorithm is proved to be an equalizer rule and to be globally asymptotically optimal for any positive communication rate constraint, as the average run length to false alarm goes to infinity. It is also shown, by numerical examples, that the CuSum-AC algorithm provides a suitable trade-off between the detection performance and the communication rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا