Do you want to publish a course? Click here

Automation methodologies and large-scale validation for $GW$, towards high-throughput $GW$ calculations

194   0   0.0 ( 0 )
 Added by Michiel van Setten
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The search for new materials, based on computational screening, relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the $GW$ method is currently the state-of-the-art {em ab initio} approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is however computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this work we develop such a method and, as a first application, use it to validate the accuracy of $G_0W_0$ using the PBE starting point, and the Godby-Needs plasmon pole model ($G_0W_0^textrm{GN}$@PBE), on a set of about 80 solids. The results of the automatic convergence study utilized provides valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of $GW$ calculations. Moreover, we find that $G_0W_0^textrm{GN}$@PBE shows a correlation between the PBE and the $G_0W_0^textrm{GN}$@PBE gaps that is much stronger than that between $GW$ and experimental gaps. However, the $G_0W_0^textrm{GN}$@PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps.



rate research

Read More

Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling $GW$ implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of $k$ points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real space and imaginary time domain. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thieles reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO$_3$). The results are compared with conventional $GW$ calculations. Good agreement is achieved, highlighting the strength of the present method.
Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size. Quasiparticle $GW$ calculations for two dimensional (2D) materials are especially difficult. The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone (BZ) integration approach rather inefficient and require an extremely dense $k$-grid to properly converge the calculated quasiparticle energies. In this work, we present a combined non-uniform sub-sampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2D $GW$ calculations. Our work is distinguished from previous work in that, instead of focusing on the intricate dielectric matrix or the screened Coulomb interaction matrix, we exploit the analytical behavior of various terms of the convolved self-energy $Sigma(mathbf{q})$ in the small $mathbf{q}$ limit. This method, when combined with another accelerated $GW$ method that we developed recently, can drastically speed-up (by over three orders of magnitude) $GW$ calculations for 2D materials. Our method allows fully converged $GW$ calculations for complex 2D systems at a fraction of computational cost, facilitating future high throughput screening of the quasiparticle properties of 2D semiconductors for various applications. To demonstrate the capability and performance of our new method, we have carried out fully converged $GW$ calculations for monolayer C$_2$N, a recently discovered 2D material with a large unit cell, and investigate its quasiparticle band structure in detail.
The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not routinely applied to large complex assemblies due to its large computational overhead and quartic scaling with particle number. Here, the GW equations are recast, exactly, as Fourier-Laplace time integrals over complex time propagators. The propagators are then shredded via energy partitioning and the time integrals approximated in a controlled manner using generalized Gaussian quadrature(s) while discrete variable methods are employed to represent the required propagators in real-space. The resulting cubic scaling GW method has a sufficiently small prefactor to outperform standard quartic scaling methods on small systems ($gtrapprox$ 10 atoms) and also represents a substantial improvement over other cubic methods tested for all system sizes studied. The approach can be applied to any theoretical framework containing large sums of terms with energy differences in the denominator.
Historically, the GW approach was put forward by Hedin as the simplest approximation to the so-called Hedin equations. In Section 2, we will derive these Hedin equations from a Feynman-diagrammatical point of view. Section 3.1 shows how GW arises as an approximation to the Hedin equations. In Section 3.2, we briefly present some typical GW results for materials, including quasiparticle renormalizations, lifetimes, and band gap enhancements. In Section 4, the combination of GW and DMFT is summarized. Finally, as a prospective outlook, ab initio dynamical vertex approximation D$Gamma$A is introduced in Section 5 as a unifying scheme for all that: GW, DMFT and non-local vertex correlations beyond.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both finite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا