No Arabic abstract
The GW method is a many-body electronic structure technique capable of generating accurate quasiparticle properties for realistic systems spanning physics, chemistry, and materials science. Despite its power, GW is not routinely applied to large complex assemblies due to its large computational overhead and quartic scaling with particle number. Here, the GW equations are recast, exactly, as Fourier-Laplace time integrals over complex time propagators. The propagators are then shredded via energy partitioning and the time integrals approximated in a controlled manner using generalized Gaussian quadrature(s) while discrete variable methods are employed to represent the required propagators in real-space. The resulting cubic scaling GW method has a sufficiently small prefactor to outperform standard quartic scaling methods on small systems ($gtrapprox$ 10 atoms) and also represents a substantial improvement over other cubic methods tested for all system sizes studied. The approach can be applied to any theoretical framework containing large sums of terms with energy differences in the denominator.
A parameterized tight-binding (TB) model based on the first-principles GW calculations is developed for single layer tin diselenide (SnSe$_2$) and used to study its electronic and optical properties under external magnetic field. The truncated model is derived from six maximally localized wannier orbitals on Se site, which accurately describes the quasi-particle electronic states of single layer SnSe$_2$ in a wide energy range. The quasi-particle electronic states are dominated by the hoppings between nearest wannier orbitals ($t_1$-$t_6$). Our numerical calculation shows that, due to the electron-hole asymmetry, two sets of Landau Level spectrum are obtained when a perpendicular magnetic field is applied. The Landau Level spectrum follows linear dependence on the level index and magnetic field, exhibiting properties of two-dimensional electron gas in traditional semiconductors. The optical conductivity calculation shows that the optical gap is very close to the GW value, and can be tuned by external magnetic field. Our proposed TB model can be used for further exploring the electronic, optical, and transport properties of SnSe$_2$, especially in the presence of external magnetic fields.
We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (> 1000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to: 1) compute a set of vectors that span the occupied subspace of the Hamiltonian; 2) reduce subspace diagonalization to just partially occupied states; and 3) obtain those states in an efficient, scalable manner via an inner Chebyshev-filter iteration. By reducing the necessary computation to just partially occupied states, and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the Discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 seconds on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 hours (of wall time).
The search for new materials, based on computational screening, relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the $GW$ method is currently the state-of-the-art {em ab initio} approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is however computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this work we develop such a method and, as a first application, use it to validate the accuracy of $G_0W_0$ using the PBE starting point, and the Godby-Needs plasmon pole model ($G_0W_0^textrm{GN}$@PBE), on a set of about 80 solids. The results of the automatic convergence study utilized provides valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of $GW$ calculations. Moreover, we find that $G_0W_0^textrm{GN}$@PBE shows a correlation between the PBE and the $G_0W_0^textrm{GN}$@PBE gaps that is much stronger than that between $GW$ and experimental gaps. However, the $G_0W_0^textrm{GN}$@PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps.
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the localized resolution of the identity approximation by which two-electron Coulomb repulsion integrals can be obtained by only computing two-center quantities -- a feature that is highly beneficial to NAOs. By exploiting the locality of basis functions and efficient prescreening of the intermediate three- and two-index tensors, one can achieve a linear scaling of the computational cost for building the HFX matrix with respect to the system size. Our implementation is massively parallel, thanks to a MPI/OpenMP hybrid parallelization strategy for distributing the computational load and memory storage. All these factors add together to enable highly efficient hybrid functional calculations for large-scale periodic systems. In this work we describe the key algorithms and implementation details for the HFX build as implemented in the ABACUS code package. The performance and scalability of our implementation with respect to the system size and the number of CPU cores are demonstrated for selected benchmark systems up to 4096 atoms.
We describe a finite-field approach to compute density response functions, which allows for efficient $G_0W_0$ and $G_0W_0Gamma_0$ calculations beyond the random phase approximation. The method is easily applicable to density functional calculations performed with hybrid functionals. We present results for the electronic properties of molecules and solids and we discuss a general scheme to overcome slow convergence of quasiparticle energies obtained from $G_0W_0Gamma_0$ calculations, as a function of the basis set used to represent the dielectric matrix.