No Arabic abstract
Valley pseudospin, labeling quantum states of energy extrema in momentum space, is attracting tremendous attention1-13 because of its potential in constructing new carrier of information. Compared with the non-topological bulk valley transport realized soon after predictions1-5, the topological valley transport in domain walls6-13 is extremely challenging owing to the inter-valley scattering inevitably induced by atomic scale imperfectness, until the recent electronic signature observed in bilayer graphene12,13. Here we report the first experimental observation of topological valley transport of sound in sonic crystals. The macroscopic nature of sonic crystals permits the flexible and accurate design of domain walls. In addition to a direct visualization of the valley-selective edge modes through spatial scanning of sound field, reflection immunity is observed in sharply curved interfaces. The topologically protected interface transport of sound, strikingly different from that in traditional sound waveguides14,15, may serve as the basis of designing devices with unconventional functions.
Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices, can be anticipated by the intriguing acoustic edge states enriched by the layer information.
Topological insulators with unique gapless edge states have revolutionized the understanding of electronic properties in solid materials. These gapless edge states are dictated by the topological invariants associated with the quantization of generalized Berry phases of the bulk energy bands through the bulk-edge correspondence, a paradigm that can also be extended to acoustic and photonic systems. Recently, high-order topological insulators (HOTIs) are proposed and observed, where the bulk topological invariants result in gapped edge states and in-gap corner or hinge states, going beyond the conventional bulk-edge correspondence. However, the existing studies on HOTIs are restricted to tight-binding models which cannot describe the energy bands of conventional sonic/photonic crystals that are due to multiple Bragg scatterings. Here, we report theoretical prediction and experimental observation of acoustic second-order topological insulators (SOTI) in two-dimensional (2D) sonic crystals (SCs) beyond the tight-binding picture. We observe gapped edge states and degenerate in-gap corner states which manifest bulk-edge correspondence in a hierarchy of dimensions. Moreover, topological transitions in both the bulk and edge states can be realized by tuning the angle of the meta-atoms in each unit-cell, leading to various conversion among bulk, edge and corner states. The emergent properties of the acoustic SOTIs open up a new route for topological designs of robust localized acoustic modes as well as topological transfer of acoustic energy between 2D, 1D and 0D modes.
Recently, the topological physics in acoustics has been attracting much attention. However, all the studies are aimed to elastic or airborne sound systems. Realizing topological insulators for underwater sound is of great importance, since water is another crucial sound medium in addition to solid and air. Here we report an experimental study on the valley-projected edge states for underwater sound. The edge states are directly observed in our ultrasound scanning experiments, together with a solid evidence for the valley-selective excitation. The experimental data agree well with our numerical results. Prospective applications can be anticipated, such as for underwater sound signal processing and ocean noise control.
Synthetic dimensions can be rendered in the physical space and this has been achieved with photonics and cold atomic gases, however, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we establish the theoretical principles and for the first time manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the topological edge-bulkedge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and demonstrating robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a new platform to explore higher-order topological matter in dimensions four and higher.
The interplay between real-space topological lattice defects and the reciprocal-space topology of energy bands can give rise to novel phenomena, such as one-dimensional topological modes bound to screw dislocations in three-dimensional topological insulators. We obtain direct experimental observations of dislocation-induced helical modes in an acoustic analog of a weak three-dimensional topological insulator. The spatial distribution of the helical modes is found through spin-resolved field mapping, and verified numerically by tight-binding and finite-element calculations. These one-dimensional helical channels can serve as robust waveguides in three-dimensional media. Our experiment paves the way to studying novel physical modes and functionalities enabled by topological lattice defects in three-dimensional classical topological materials.