Do you want to publish a course? Click here

Bridging the Terahertz gap for chaotic sources with superconducting junctions

131   0   0.0 ( 0 )
 Added by Dmitry Gulevich R
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe a broadband chaotic signal of Terahertz frequency emitted from a superconducting junction. The generated radiation has a wide spectrum reaching 0.7 THz and power sufficient to drive on-chip circuit elements. To our knowledge, this is the first experimental observation of a high-frequency chaotic signal emitted by a superconducting system which lies inside the Terahertz gap. Our experimental finding is fully confirmed by the numerical modeling based on the microscopic theory and reveals the unrealized potential of superconducting systems in chaos-based Terahertz communication, fast generation of true random numbers and non-invasive Terahertz spectroscopy applicable to physical, chemical and biological systems.



rate research

Read More

175 - A. Luo , T. Wolf , Y. Wang 2012
In this letter, we present the study of the high-frequency mixing properties of ion irradiated YBa2Cu3O7 Josephson nano-junctions. The frequency range, spanning above and below the characteristic frequencies fc of the junctions, permits clear observation of the transition between two mixing regimes. The experimental conversion gain was found to be in good agreement with the prediction of the three ports model. Finally, we discuss the potential of the junctions to build a Josephson mixer operating in the terahertz frequency range.
Quantitative description of charge transport across tunneling and break-junction devices with novel superconductors encounters some problems not present, or not as severe for traditional superconducting materials. In this work, we explain unexpected features in related transport characteristics as an effect of a degraded nano-scaled sheath at the superconductor surface. Model capturing main aspects of the ballistic charge transport across hybrid superconducting structures with normally-conducting nm-thick interlayers is proposed. The calculations are based on a scattering formalism taking into account Andreev electron-into-hole (and inverse) reflections at normal metal-superconductor interfaces as well as transmission and backscattering events in insulating barriers between the electrodes. Current-voltage characteristics of such devices exhibit a rich diversity of anomalous (from the viewpoint of the standard theory) features, in particular, shift of differential-conductance maximums at gap voltages to lower positions and appearance of well-defined dips instead expected coherence peaks. We compare our results with related experimental data.
We investigate the interplay between gap oscillations and damping in the dynamics of superconductors taken out of equilibrium by strong optical pulses with sub-gap Terahertz frequencies. A semi-phenomenological formalism is developed to include the damping within the electronic subsystem that arises from effects beyond BCS, such as interactions between Bogoliubov quasiparticles and decay of the Higgs mode. Such processes are conveniently expressed as $T_{1}$ and $T_{2}$ times in the standard pseudospin language for superconductors. Comparing with data on NbN that we report here, we argue that the superconducting dynamics in the picosecond time scale, after the pump is turned off, is governed by the $T_{2}$ process.
We investigate Magnetic Josephson Junction (MJJ) - a superconducting device with ferromagnetic barrier for a scalable high-density cryogenic memory compatible with energy-efficient single flux quantum (SFQ) circuits. The superconductor-insulator-superconductor-ferromagnet-superconductor (SISFS) MJJs are analyzed both experimentally and theoretically. We found that the properties of SISFS junctions fall into two distinct classes based on the thickness of S layer. We fabricate Nb-Al/AlOx-Nb-PdFe-Nb SISFS MJJs using a co-processing approach with a combination of HYPRES and ISSP fabrication processes. The resultant SISFS structure with thin superconducting S-layer is substantially affected by the ferromagnetic layer as a whole. We fabricate these type of junctions to reach the device compatibility with conventional SIS junctions used for superconducting SFQ electronics to ensure a seamless integration of MJJ-based circuits and SIS JJ-based ultra-fast digital SFQ circuits. We report experimental results for MJJs, demonstrating their applicability for superconducting memory and digital circuits. These MJJs exhibit IcRn product only ~30% lower than that of conventional SIS junctions co-produced in the same fabrication. Analytical calculations for these SISFS structures are in a good agreement with the experiment. We discuss application of MJJ devices for memory and programmable logic circuits.
159 - X. Wu , J. L. Long , H. S. Ku 2017
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ with Ar milling before the junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا