Do you want to publish a course? Click here

Toward terahertz heterodyne detection with superconducting Josephson nano-junctions

168   0   0.0 ( 0 )
 Added by Nicolas Bergeal
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we present the study of the high-frequency mixing properties of ion irradiated YBa2Cu3O7 Josephson nano-junctions. The frequency range, spanning above and below the characteristic frequencies fc of the junctions, permits clear observation of the transition between two mixing regimes. The experimental conversion gain was found to be in good agreement with the prediction of the three ports model. Finally, we discuss the potential of the junctions to build a Josephson mixer operating in the terahertz frequency range.



rate research

Read More

We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa2Cu3O7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers, in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies fc of the junctions.
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For $N ge 3$, it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three $s$- or three $p$-wave superconductors, we provide analytic expressions for the Andreev bound state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of $4e^2/h$, where $e$ is the electron charge and $h = 2pi hbar$ is Plancks constant. For a sinusoidal current with frequency $omega$ applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage $langle V_1 rangle$ across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of $2e langle V_1 rangle/(hbar omega)$. We also use our formalism to study junctions of two $p$- and one $s$-wave wires. We find that the corresponding Andreev bound state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external applied voltage across the junction. We discuss experiments which may test our theory.
We investigate Magnetic Josephson Junction (MJJ) - a superconducting device with ferromagnetic barrier for a scalable high-density cryogenic memory compatible with energy-efficient single flux quantum (SFQ) circuits. The superconductor-insulator-superconductor-ferromagnet-superconductor (SISFS) MJJs are analyzed both experimentally and theoretically. We found that the properties of SISFS junctions fall into two distinct classes based on the thickness of S layer. We fabricate Nb-Al/AlOx-Nb-PdFe-Nb SISFS MJJs using a co-processing approach with a combination of HYPRES and ISSP fabrication processes. The resultant SISFS structure with thin superconducting S-layer is substantially affected by the ferromagnetic layer as a whole. We fabricate these type of junctions to reach the device compatibility with conventional SIS junctions used for superconducting SFQ electronics to ensure a seamless integration of MJJ-based circuits and SIS JJ-based ultra-fast digital SFQ circuits. We report experimental results for MJJs, demonstrating their applicability for superconducting memory and digital circuits. These MJJs exhibit IcRn product only ~30% lower than that of conventional SIS junctions co-produced in the same fabrication. Analytical calculations for these SISFS structures are in a good agreement with the experiment. We discuss application of MJJ devices for memory and programmable logic circuits.
We observe a broadband chaotic signal of Terahertz frequency emitted from a superconducting junction. The generated radiation has a wide spectrum reaching 0.7 THz and power sufficient to drive on-chip circuit elements. To our knowledge, this is the first experimental observation of a high-frequency chaotic signal emitted by a superconducting system which lies inside the Terahertz gap. Our experimental finding is fully confirmed by the numerical modeling based on the microscopic theory and reveals the unrealized potential of superconducting systems in chaos-based Terahertz communication, fast generation of true random numbers and non-invasive Terahertz spectroscopy applicable to physical, chemical and biological systems.
We are developing a superconductor electronics fabrication process with up to nine planarized superconducting layers, stackable stud vias, self-shunted Nb/AlOx-Al/Nb Josephson junctions, and one layer of MoNx kinetic inductors. The minimum feature size of resistors and inductors in the process is 250 nm. We present data on the mutual inductance of Nb stripline and microstrip inductors with linewidth and spacing from 250 nm to 1 {mu}m made on the same or adjacent Nb layers, as well as the data on the linewidth and resistance uniformity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا