Do you want to publish a course? Click here

Impact of damping on superconducting gap oscillations induced by intense Terahertz pulses

297   0   0.0 ( 0 )
 Added by Tianbai Cui
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the interplay between gap oscillations and damping in the dynamics of superconductors taken out of equilibrium by strong optical pulses with sub-gap Terahertz frequencies. A semi-phenomenological formalism is developed to include the damping within the electronic subsystem that arises from effects beyond BCS, such as interactions between Bogoliubov quasiparticles and decay of the Higgs mode. Such processes are conveniently expressed as $T_{1}$ and $T_{2}$ times in the standard pseudospin language for superconductors. Comparing with data on NbN that we report here, we argue that the superconducting dynamics in the picosecond time scale, after the pump is turned off, is governed by the $T_{2}$ process.



rate research

Read More

Experiments observe an enhanced superconducting gap over impurities as compared to the clean-bulk value. In order to shed more light on this phenomenon, we perform simulations within the framework of Bogoliubov-deGennes theory applied to the attractive Hubbard model. The simulations qualitatively reproduce the experimentally observed enhancement effect; it can be traced back to an increased particle density in the metal close to the impurity site. In addition, the simulations display significant differences between a thin (2D) and a very thick (3D) film. In 2D pronounced Friedel oscillations can be observed, which decay much faster in (3D) and therefore are more difficult to resolve. Also this feature is in qualitative agreement with the experiment.
We demonstrate mutual synchronization of Josephson oscillations in multiple stacks of intrinsic Josephson junctions of the cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta }$. Detailed analysis of the full polarization parameters allows the determination of a phase correlation between the stacks: a simultaneous emission state is described by a linear combination of individual emission states with a phase retardation. This proves that the stacks are coupled via a Josephson plasma in a superconducting substrate and the coupling matrices can be extracted from polarization analyses. Our findings suggest a route towards the realization of high-power terahertz sources based on the synchronization of a large number of intrinsic Josephson junctions.
We report high-resolution scanning tunneling microscopy (STM) study of nano-sized Pb islands grown on SrTiO3, where three distinct types of gaps with different energy scales are revealed. At low temperature, an enlarged superconducting gap ({Delta}s) emerges while there is no enhancement in superconducting transition temperature (Tc), giving rise to a larger BCS ratio 2{Delta}s/kBTc ~ 6.22. The strong coupling here may originate from the electron-phonon coupling on the metal-oxide interface. As the superconducting gap is suppressed under applied magnetic field or at elevated temperature, Coulomb gap and pseudogap appear, respectively. The Coulomb gap is sensitive to the lateral size of Pb islands, indicating that quantum size effect is able to influence electronic correlation, which is usually ignored in low-dimensional superconductivity. Our experimental results shall shed important light on the interplay between quantum size effect and correlations in nano-sized superconductors.
We observe a broadband chaotic signal of Terahertz frequency emitted from a superconducting junction. The generated radiation has a wide spectrum reaching 0.7 THz and power sufficient to drive on-chip circuit elements. To our knowledge, this is the first experimental observation of a high-frequency chaotic signal emitted by a superconducting system which lies inside the Terahertz gap. Our experimental finding is fully confirmed by the numerical modeling based on the microscopic theory and reveals the unrealized potential of superconducting systems in chaos-based Terahertz communication, fast generation of true random numbers and non-invasive Terahertz spectroscopy applicable to physical, chemical and biological systems.
386 - M. Taupin , L. Howald , D. Aoki 2014
Thermal conductivity measurements in the superconducting state of the ferromagnet UCoGe were performed at very low temperatures and under magnetic field on samples of different qualities and with the heat current along the three crystallographic axis. This allows to disentangle intrinsic and extrinsic effects, confirm the situation of multigap superconductivity and shed new light on the situation expected or claimed for the gap in these ferromagnetic superconductors, like evidences of absence of partially gapped Fermi surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا