Do you want to publish a course? Click here

Scattering theory from artificial piezoelectric-like meta-atoms and molecules

80   0   0.0 ( 0 )
 Added by Yakir Hadad Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by the natural piezoelectric effect, we introduce hybrid-wave electromechanical meta-atoms and meta-molecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We propose an analytical model for the linearized electromechanical scattering process, and explore its properties based on first principles. We demonstrate that by exploiting the linearized hybrid-wave interaction, one may enable functionalities that are forbidden otherwise, going beyond the limits of todays metamaterials. As an example we show an electrically deep sub-wavelength dimer of meta-atoms with extremely sensitive response to the direction-of-arrival of an impinging electromagnetic wave. This scheme of meta-atoms and molecules may open ways for metamaterials with a plethora of exciting dynamics and phenomena that have not been studied before with potential technological implications in radio-frequencies and acoustics.

rate research

Read More

Molecules composed of atoms exhibit properties not inherent to their constituent atoms. Similarly, meta-molecules consisting of multiple meta-atoms possess emerging features that the meta-atoms themselves do not possess. Metasurfaces composed of meta-molecules with spatially variant building blocks, such as gradient metasurfaces, are drawing substantial attention due to their unconventional controllability of the amplitude, phase, and frequency of light. However, the intricate mechanisms and the large degrees of freedom of the multi-element systems impede an effective strategy for the design and optimization of meta-molecules. Here, we propose a hybrid artificial intelligence-based framework consolidating compositional pattern-producing networks and cooperative coevolution to resolve the inverse design of meta-molecules in metasurfaces. The framework breaks the design of the meta-molecules into separate designs of meta-atoms, and independently solves the smaller design tasks of the meta-atoms through deep learning and evolutionary algorithms. We leverage the proposed framework to design metallic meta-molecules for arbitrary manipulation of the polarization and wavefront of light. Moreover, the efficacy and reliability of the design strategy are confirmed through experimental validations. This framework reveals a promising candidate approach to expedite the design of large-scale metasurfaces in a labor-saving, systematic manner.
Interaction of electromagnetic radiation with time-variant objects is a fundamental problem whose study involves foundational principles of classical electrodynamics. Such study is a necessary preliminary step for delineating the novel research field of linear time-varying metamaterials and metasurfaces. A closer look to the literature, however, reveals that this crucial step has not been addressed and important simplifying assumptions have been made. Before proceeding to studies of linear time-varying metamaterials and metasurfaces with their effective parameters, we need to rigorously describe the electric and magnetic responses of a temporally-modulated meta-atom. Here, we introduce a theoretical model which describes a time-variant meta-atom and its interaction with incident electromagnetic waves in time domain. The developed general approach is specialized for a dipole emitter/scatterer loaded with a time-varying reactive element. We confirm the validity of the theoretical model with full-wave simulations. Our study is of major significance also in the area of nanophotonics and nano-optics because the optical properties of all-dielectric and plasmonic nanoparticles can be varied in time in order to achieve intriguing scattering phenomena.
We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interference between two possible quantum transitions of an outer electron in a S-state, one dispersive electric-dipole transition to a P-orbital state and a second resonant electric-quadrupole transition to a P-orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10^{-5} photons scattered per atom per second.
Flat optics foresees a new era of ultra-compact optical devices, where metasurfaces serve as the foundation. Conventional designs of metasurfaces start with a certain structure as the prototype, followed by an extensive parametric sweep to accommodate the requirements of phase and amplitude of the emerging light. Regardless of how computation-consuming the process is, a predefined structure can hardly realize the independent control over the polarization, frequency, and spatial channels, which hinders the potential of metasurfaces to be multifunctional. Besides, achieving complicated and multiple functions calls for designing a meta-optic system with multiple cascading layers of metasurfaces, which introduces super exponential complexity. In this work we present an artificial intelligence framework for designing multilayer meta-optic systems with multifunctional capabilities. We demonstrate examples of a polarization-multiplexed dual-functional beam generator, a second order differentiator for all-optical computation, and a space-polarization-wavelength multiplexed hologram. These examples are barely achievable by single-layer metasurfaces and unattainable by traditional design processes.
We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments, and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to 1000 N, and to minimize the background signal the space around the sample is kept as open as possible. We demonstrate here that by mounting plate-like samples with epoxy, a uniaxial stress exceeding 1 GPa can be achieved in an active volume of 5 mm3. We show that for practical operation it is important to monitor both the force and displacement applied to the sample. Also, because time is critical during facility experiments, samples are mounted in detachable holders that can be rapidly exchanged. The piezoelectric actuators are likewise contained in an exchangeable cartridge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا