No Arabic abstract
We present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments, and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to 1000 N, and to minimize the background signal the space around the sample is kept as open as possible. We demonstrate here that by mounting plate-like samples with epoxy, a uniaxial stress exceeding 1 GPa can be achieved in an active volume of 5 mm3. We show that for practical operation it is important to monitor both the force and displacement applied to the sample. Also, because time is critical during facility experiments, samples are mounted in detachable holders that can be rapidly exchanged. The piezoelectric actuators are likewise contained in an exchangeable cartridge.
We present a design for a piezoelectric-driven uniaxial stress cell suitable for use at ambient and cryogenic temperatures, and that incorporates both a displacement and a force sensor. The cell has a diameter of 46 mm and a height of 13 mm. It can apply a zero-load displacement of up to ~45 $mu$m, and a zero-displacement force of up to ~245 N. With combined knowledge of the displacement and force applied to the sample, it can quickly be determined whether the sample and its mounts remain within their elastic limits. In tests on the oxide metal Sr$_2$RuO$_4$, we found that at room temperature serious plastic deformation of the sample onset at a uniaxial stress of ~0.2 GPa, while at 5 K the sample deformation remained elastic up to almost 2 GPa. This result highlights the usefulness of in situ tuning, in which the force can be applied after cooling samples to cryogenic temperatures.
A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (muSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the material into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and asofter inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperatures, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background muSR signal.
We report the development of a technique to measure heat capacity at large uniaxial pressure using a piezoelectric-driven device generating compressive and tensile strain in the sample. Our setup is optimized for temperatures ranging from 8 K down to millikelvin. Using an AC heat-capacity technique we are able to achieve an extremely high resolution and to probe a homogeneously strained part of the sample. We demonstrate the capabilities of our setup on the unconventional superconductor Sr$_2$RuO$_4$. By replacing thermometer and adjusting the remaining setup accordingly the temperature regime of the experiment can be adapted to other temperature ranges of interest.
Nd2Hf2O7, belonging to the family of geometrically frustrated cubic rare earth pyrochlore oxides, was recently identified to order antiferromagnetically below T_N = 0.55 K with an all-in/all-out arrangement of Nd3+ moments, however with a much reduced ordered state moment. Herein we investigate the spin dynamics and crystal field states of Nd2Hf2O7 using muon spin relaxation (muSR) and inelastic neutron scattering (INS) measurements. Our muSR study confirms the long range magnetic ordering and shows evidence for coexisting persistent dynamic spin fluctuations deep inside the ordered state down to 42 mK. The INS data show the crytal electric field (CEF) excitations due to the transitions both within the ground state multiplet and to the first excited state multiplet. The INS data are analyzed by a model based on CEF and crystal field states are determined. Strong Ising-type anisotropy is inferred from the ground state wavefunction. The CEF parameters indicate the CEF-split Kramers doublet ground state of Nd3+ to be consistent with the dipolar-octupolar character.
The spin ice materials Ho2Ti2O7 and Dy2Ti2O7 are experimental and theoretical exemplars of highly frustrated magnetic materials. However, the effects of an applied uniaxial pressure are not well studied, and here we report magnetization measurements of Ho2Ti2O7 under uniaxial pressure applied in the [001], [111] and [110] crystalline directions. The basic features are captured by an extension of the dipolar spin ice model. We find a good match between our model and measurements with pressures applied along two of the three directions, and extend the framework to discuss the influence of crystal misalignment for the third direction. The parameters determined from the magnetization measurements reproduce neutron scattering measurements we perform under uniaxial pressure applied along the [110] crystalline direction. In the detailed analysis we include the recently verified susceptibility dependence of the demagnetizing factor. Our work demonstrates the application of a moderate applied pressure to modify the magnetic interaction parameters. The knowledge can be used to predict critical pressures needed to induce new phases and transitions in frustrated materials, and in the case of Ho2Ti2O7 we expect a transition to a ferromagnetic ground state for uniaxial pressures above 3.3 GPa.