Do you want to publish a course? Click here

Update on extraction of transversity PDF from inclusive di-hadron production

119   0   0.0 ( 0 )
 Added by Marco Radici
 Publication date 2017
  fields
and research's language is English
 Authors Marco Radici




Ask ChatGPT about the research

The transversity was recently extracted from data on the production of hadron pairs in semi-inclusive deep-inelastic scattering. This analysis can be conveniently performed in the framework of collinear factorization where the elementary mechanism is represented by the simple product of transversity and of a suitable chiral-odd function describing the fragmentation of a transversely polarized parton into a pair of hadrons inside the same current jet. The same elementary mechanism was predicted long ago to generate an asymmetry in the azimuthal distribution of the hadron pairs when they are produced in proton-proton collisions with one transversely polarized proton. Recently, the STAR Collaboration has observed this asymmetry. We analyze the impact of these data on our knowledge of transversity and we present its first preliminary extraction from a global fit of all data in hard processes with inclusive di-hadron production.



rate research

Read More

We summarize the latest achievements about the extraction of the transversity parton distribution and proton tensor charge based on an analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets. Recently released data for proton and deuteron targets by HERMES and COMPASS allow for a flavor separation of the valence components of transversity. At variance with the Collins effect, this extraction is performed in the framework of collinear factorization and relies on di-hadron fragmentation functions. The latter have been taken from the first recent analysis of the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. We also comment on the possibility of isolating new azimuthally asymmetric correlations of opposite pion pairs, which could arise when a fragmenting quark crosses parity-odd domains localized in Minkowski space-time and induced by the topologically nontrivial QCD background (the so-called theta vacuum).
141 - Marco Radici 2018
We present the first extraction of the transversity distribution based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important among other things for detecting possible signals of new physics in high-precision low-energy experiments.
We present an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets make it possible to perform a flavor separation of the valence components of the transversity distribution, using di-hadron fragmentation functions taken from the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. The e+e- data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. Then, the transversity distribution has been extracted by using the most recent and more precise COMPASS data for deep-inelastic scattering off proton targets. Our results represent the most accurate estimate of the uncertainties on the valence components of the transversity distribution currently available.
131 - Marco Radici 2015
We have updated our extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. The most recent COMPASS data for proton and deuteron targets, complemented by previous HERMES data on the proton, make it possible to perform a flavor separation of the valence components of the transversity distribution, using di-hadron fragmentation functions taken from the semi-inclusive production of two pion pairs in back-to-back jets in $e^+ e^-$ annihilation. The $e^+ e^-$ data from BELLE have been reanalyzed to reach a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function. Our results represent the most accurate estimate of the uncertainties on the valence components of the transversity distribution currently available.
We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets and in proton-proton collisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا