Do you want to publish a course? Click here

First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

80   0   0.0 ( 0 )
 Added by Marco Radici
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets and in proton-proton collisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

rate research

Read More

We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions and it allows to test its universality.
72 - B. Pasquini 2017
We present the first attempt to extract the scalar dipole dynamical polarizabilities from proton real Compton scattering data below pion-production threshold. The theoretical framework combines dispersion relations technique, low-energy expansion and multipole decomposition of the scattering amplitudes. The results are obtained with statistical tools that have never been applied so far to Compton scattering data and are crucial to overcome problems inherent to the analysis of the available data set.
Extracting the proton charge radius from electron scattering data requires determining the slope of the charge form factor at $Q^2$ of zero. But as experimental data never reach that limit, numerous methods for making the extraction have been proposed, though often the functions are determined after seeing the data which can lead to confirmation bias. To find functional forms that will allow for a robust extraction of the input radius for a wide variety of functional forms in order to have confidence in the extraction from upcoming low $Q^2$ experimental data such as the Jefferson Lab PRad experiment, we create a general framework for inputting form-factor functions as well as various fitting functions. The input form factors are used to generate pseudo-data with fluctuations intended to mimic the binning and random uncertainty of a given set of real data. All combinations of input functions and fit functions can then be tested repeatedly against regenerated pseudo-data. Since the input radius is known, this allows us to find fit functions that are robust for radius extractions in an objective fashion. For the range and uncertainty of the PRad data, we find that a two-parameter rational function, a two-parameter continued fraction and the second order polynomial expansion of $z$ can extract the input radius regardless of the input charge form factor function that is used. We have created an easily expandable framework to search for functional forms that allow for a robust extraction of the radius from a given binning and uncertainty of pseudo-data generated from a wide variety of trial functions. This method has enabled a successful search for the best functional forms to extract the radius from the upcoming PRad data and can be used for other experiments.
113 - Gil Paz 2020
The proton radius puzzle has motivated several new experiments that aim to extract the proton charge radius and resolve the puzzle. Recently PRad, a new electron-proton scattering experiment at Jefferson Lab, reported a proton charge radius of $0.831pm 0.007_textnormal{statistical}pm 0.012_textnormal{systematic}$. The value was obtained by using a rational function model for the proton electric form factor. We perform a model-independent extraction using $z$-expansion of the proton charge radius from PRad data. We find that the model-independent statistical error is more than 50% larger compared to the statistical error reported by PRad.
141 - Marco Radici 2018
We present the first extraction of the transversity distribution based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with one transversely polarized proton. The extraction relies on the knowledge of di-hadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the chiral-odd transversity is extracted from a global analysis similar to what is usually done for the chiral-even spin-averaged and helicity distributions. The knowledge of transversity is important among other things for detecting possible signals of new physics in high-precision low-energy experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا