No Arabic abstract
In this paper a spectrum sensing policy employing recency-based exploration is proposed for cognitive radio networks. We formulate the problem of finding a spectrum sensing policy for multi-band dynamic spectrum access as a stochastic restless multi-armed bandit problem with stationary unknown reward distributions. In cognitive radio networks the multi-armed bandit problem arises when deciding where in the radio spectrum to look for idle frequencies that could be efficiently exploited for data transmission. We consider two models for the dynamics of the frequency bands: 1) the independent model where the state of the band evolves randomly independently from the past and 2) the Gilbert-Elliot model, where the states evolve according to a 2-state Markov chain. It is shown that in these conditions the proposed sensing policy attains asymptotically logarithmic weak regret. The policy proposed in this paper is an index policy, in which the index of a frequency band is comprised of a sample mean term and a recency-based exploration bonus term. The sample mean promotes spectrum exploitation whereas the exploration bonus encourages for further exploration for idle bands providing high data rates. The proposed recency based approach readily allows constructing the exploration bonus such that it will grow the time interval between consecutive sensing time instants of a suboptimal band exponentially, which then leads to logarithmically increasing weak regret. Simulation results confirming logarithmic weak regret are presented and it is found that the proposed policy provides often improved performance at low complexity over other state-of-the-art policies in the literature.
In this paper, we study partially overlapping co-existence scenarios in cognitive radio environment. We consider an Orthogonal Frequency Division Multiplexing (OFDM) cognitive system coexisting with a narrow-band (NB) and an OFDM primary system, respectively. We focus on finding the minimum frequency separation between the coexisting systems to meet a certain target BER. Windowing and nulling are used as simple techniques to reduce the OFDM out-of-band radiations, and, hence decrease the separation. The effect of these techniques on the OFDM spectral efficiency and PAPR is also studied.
In this paper, we present a multi-user resource allocation framework using fragmented-spectrum synchronous OFDM-CDMA modulation over a frequency-selective fading channel. In particular, given pre-existing communications in the spectrum where the system is operating, a channel sensing and estimation method is used to obtain information of subcarrier availability. Given this information, some real-valued multi-level orthogonal codes, which are orthogonal codes with values of ${pm1,pm2,pm3,pm4, ... }$, are provided for emerging new users, i.e., cognitive radio users. Additionally, we have obtained a closed form expression for bit error rate of cognitive radio receivers in terms of detection probability of primary users, CR users sensing time and CR users signal to noise ratio. Moreover, simulation results obtained in this paper indicate the precision with which the analytical results have been obtained in modeling the aforementioned system.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks.
In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in the network and frequency bands licensed to primary users (PUs) is investigated. The problem is formulated as a matching game between SUs and PUs. In this game, SUs employ a soft-decision Bayesian framework to detect PUs signals and, eventually, rank them based on the logarithm of the a posteriori ratio. A performance measure that captures both the ranking metric and rate is further computed by the SUs. Using this performance measure, a PU evaluates its own utility function that it uses to build its own association preferences. A distributed algorithm that allows both SUs and PUs to interact and self-organize into a stable match is proposed. Simulation results show that the proposed algorithm can improve the sum of SUs rates by up to 20 % and 60 % relative to the deferred acceptance algorithm and random channel allocation approach, respectively. The results also show an improved convergence time.