No Arabic abstract
In this paper, we present a multi-user resource allocation framework using fragmented-spectrum synchronous OFDM-CDMA modulation over a frequency-selective fading channel. In particular, given pre-existing communications in the spectrum where the system is operating, a channel sensing and estimation method is used to obtain information of subcarrier availability. Given this information, some real-valued multi-level orthogonal codes, which are orthogonal codes with values of ${pm1,pm2,pm3,pm4, ... }$, are provided for emerging new users, i.e., cognitive radio users. Additionally, we have obtained a closed form expression for bit error rate of cognitive radio receivers in terms of detection probability of primary users, CR users sensing time and CR users signal to noise ratio. Moreover, simulation results obtained in this paper indicate the precision with which the analytical results have been obtained in modeling the aforementioned system.
In this paper a spectrum sensing policy employing recency-based exploration is proposed for cognitive radio networks. We formulate the problem of finding a spectrum sensing policy for multi-band dynamic spectrum access as a stochastic restless multi-armed bandit problem with stationary unknown reward distributions. In cognitive radio networks the multi-armed bandit problem arises when deciding where in the radio spectrum to look for idle frequencies that could be efficiently exploited for data transmission. We consider two models for the dynamics of the frequency bands: 1) the independent model where the state of the band evolves randomly independently from the past and 2) the Gilbert-Elliot model, where the states evolve according to a 2-state Markov chain. It is shown that in these conditions the proposed sensing policy attains asymptotically logarithmic weak regret. The policy proposed in this paper is an index policy, in which the index of a frequency band is comprised of a sample mean term and a recency-based exploration bonus term. The sample mean promotes spectrum exploitation whereas the exploration bonus encourages for further exploration for idle bands providing high data rates. The proposed recency based approach readily allows constructing the exploration bonus such that it will grow the time interval between consecutive sensing time instants of a suboptimal band exponentially, which then leads to logarithmically increasing weak regret. Simulation results confirming logarithmic weak regret are presented and it is found that the proposed policy provides often improved performance at low complexity over other state-of-the-art policies in the literature.
In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in the network and frequency bands licensed to primary users (PUs) is investigated. The problem is formulated as a matching game between SUs and PUs. In this game, SUs employ a soft-decision Bayesian framework to detect PUs signals and, eventually, rank them based on the logarithm of the a posteriori ratio. A performance measure that captures both the ranking metric and rate is further computed by the SUs. Using this performance measure, a PU evaluates its own utility function that it uses to build its own association preferences. A distributed algorithm that allows both SUs and PUs to interact and self-organize into a stable match is proposed. Simulation results show that the proposed algorithm can improve the sum of SUs rates by up to 20 % and 60 % relative to the deferred acceptance algorithm and random channel allocation approach, respectively. The results also show an improved convergence time.
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this paper, we investigate the distributed DSA problem for multi-user in a typical multi-channel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we proposed a centralized off-line training and distributed on-line execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of cognitive radio network in distributed fashion without coordination information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. From the simulation results, we can observe that the proposed algorithm can converge fast and achieve almost the optimal performance.
The theory of wireless information and power transfer in energy constrained wireless networks has caught the interest of researchers due to its potential in increasing the lifetime of sensor nodes and mitigate the environment hazards caused by conventional cell batteries. Similarly, the advancements in areas of cooperative spectrum sharing protocols has enabled efficient use of frequency spectrum between a licensed primary user and a secondary user. In this paper, we consider an energy constrained secondary user which harvests energy from the primary signal and relays the primary signal in exchange for the spectrum access. We consider Nakagami-m fading model and propose two key protocols, namely time-splitting cooperative spectrum sharing (TS-CSS) and power-sharing cooperative spectrum sharing (PS-CSS), and derive expressions for the outage probabilities of the primary and secondary user in decode-forward and amplify-forward relaying modes. From the obtained results, it has been shown that the secondary user can carry its own transmission without adversely affecting the performance of the primary user and that PS-CSS protocol outperforms the TS-PSS protocol in terms of outage probability over a wide range of Signal to noise ratio(SNRs). The effect of various system parameters on the outage performance of these protocols have also been studied.
Aerial base station (ABS) is a promising solution for public safety as it can be deployed in coexistence with cellular networks to form a temporary communication network. However, the interference from the primary cellular network may severely degrade the performance of an ABS network. With this consideration, an adaptive dynamic interference avoidance scheme is proposed in this work for ABSs coexisting with a primary network. In the proposed scheme, the mobile ABSs can reconfigure their locations to mitigate the interference from the primary network, so as to better relay the data from the designated source(s) to destination(s). To this end, the single/multi-commodity maximum flow problems are formulated and the weighted Cheeger constant is adopted as a criterion to improve the maximum flow of the ABS network. In addition, a distributed algorithm is proposed to compute the optimal ABS moving directions. Moreover, the trade-off between the maximum flow and the shortest path trajectories is investigated and an energy-efficient approach is developed as well. Simulation results show that the proposed approach is effective in improving the maximum network flow and the energy-efficient approach can save up to 39% of the energy for the ABSs with marginal degradation in the maximum network flow.