Do you want to publish a course? Click here

Basic quantizations of $D=4$ Euclidean, Lorentz, Kleinian and quaternionic $mathfrak{o}^{star}(4)$ symmetries

199   0   0.0 ( 0 )
 Added by Andrzej Borowiec
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})cong mathfrak{o}(3;mathbb{C})oplus mathfrak{o}(3;mathbb{C})$, describing quantum rotational symmetry of four-dimensional complex space-time, in particular we provide the corresponding universal quantum $R$-matrices. Further applying four possible reality conditions we obtain all sixteen Hopf-algebraic quantum deformations for the real forms of $mathfrak{o}(4;mathbb{C})$: Euclidean $mathfrak{o}(4)$, Lorentz $mathfrak{o}(3,1)$, Kleinian $mathfrak{o}(2,2)$ and quaternionic $mathfrak{o}^{star}(4)$. For $mathfrak{o}(3,1)$ we only recall well-known results obtained previously by the authors, but for other real Lie algebras (Euclidean, Kleinian, quaternionic) as well as for the complex Lie algebra $mathfrak{o}(4;mathbb{C})$ we present new results.



rate research

Read More

In our previous paper we obtained a full classification of nonequivalent quasitriangular quantum deformations for the complex $D=4$ Euclidean Lie symmetry $mathfrak{o}(4;mathbb{C})$. The result was presented in the form of a list consisting of three three-parameter, one two-parameter and one one-parameter nonisomorphic classical $r$-matrices which provide directions of the nonequivalent quantizations of $mathfrak{o}(4;mathbb{C})$. Applying reality conditions to the complex $mathfrak{o}(4;mathbb{C})$ $r$-matrices we obtained the nonisomorphic classical $r$-matrices for all possible real forms of $mathfrak{o}(4;mathbb{C})$: Euclidean $mathfrak{o}(4)$, Lorentz $mathfrak{o}(3,1)$, Kleinian $mathfrak{o}(2,2)$ and quaternionic $mathfrak{o}^{star}(4)$ Lie algebras. In the case of $mathfrak{o}(4)$ and $mathfrak{o}(3,1)$ real symmetries these $r$-matrices give the full classifications of the inequivalent quasitriangular quantum deformations, however for $mathfrak{o}(2,2)$ and $mathfrak{o}^{star}(4)$ the classifications are not full. In this paper we complete these classifications by adding three new three-parameter $mathfrak{o}(2,2)$-real $r$-matrices and one new three-parameter $mathfrak{o}^{star}(4)$-real $r$-matrix. All nonisomorphic classical $r$-matrices for all real forms of $mathfrak{o}(4;mathbb{C})$ are presented in the explicite form what is convenient for providing the quantizations. We will mention also some applications of our results to the deformations of space-time symmetries and string $sigma$-models.
We employ new calculational technique and present complete list of classical $r$-matrices for $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})$, the rotational symmetry of four-dimensional complex space-time. Further applying reality conditions we obtain the classical $r$-matrices for all possible real forms of $mathfrak{o}(4;mathbb{C})$: Euclidean $mathfrak{o}(4)$, Lorentz $mathfrak{o}(3,1)$, Kleinian $mathfrak{o}(2,2)$ and quaternionic $mathfrak{o}^{star}(4)$ Lie algebras. For $mathfrak{o}(3,1)$ we get known four classical $D=4$ Lorentz $r$-matrices, but for other real Lie algebras (Euclidean, Kleinian, quaternionic) we provide new results and mention some applications.
We use the decomposition of o(3,1)=sl(2;C)_1oplus sl(2;C)_2 in order to describe nonstandard quantum deformation of o(3,1) linked with Jordanian deformation of sl(2;C}. Using twist quantization technique we obtain the deformed coproducts and antipodes which can be expressed in terms of real physical Lorentz generators. We describe the extension of the considered deformation of D=4 Lorentz algebra to the twist deformation of D=4 Poincare algebra with dimensionless deformation parameter.
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide new explicit formulae for a chosen twisted D=4 Euclidean Hopf superalgebra and describe the corresponding quantum covariant deformation of chiral Euclidean superspace.
We provide the classification of real forms of complex D=4 Euclidean algebra $mathcal{epsilon}(4; mathbb{C}) = mathfrak{o}(4;mathbb{C})) ltimes mathbf{T}_{mathbb{C}}^4$ as well as (pseudo)real forms of complex D=4 Euclidean superalgebras $mathcal{epsilon}(4|N; mathbb{C})$ for N=1,2. Further we present our results: N=1 and N=2 supersymmetric D=4 Poincare and Euclidean r-matrices obtained by using D= 4 Poincare r-matrices provided by Zakrzewski [1]. For N=2 we shall consider the general superalgebras with two central charges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا