Do you want to publish a course? Click here

Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields: Dependence on Jet Radius

87   0   0.0 ( 0 )
 Added by Ken-Ichi Nishikawa
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study we investigate jet interaction at a microscopic level in a cosmological environment, which responds to a key open question in the study of relativistic jets. Using small simulation systems during prior research, we initially studied the evolution of both electron-proton and electron-positron relativistic jets containing helical magnetic fields, by focusing on their interactions with an ambient plasma. Here, using larger jet radii, we have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). We found that the evolution of global jets strongly depends on the size of the jet radius. For example, phase bunching of jet electrons, in particular in the electron-proton jet, is mixed with larger jet radius due to the more complicated structures of magnetic fields with excited kinetic instabilities. In our simulation study these kinetic instabilities lead to new types of instabilities in global jets. In the electron-proton jet simulation a modified recollimation occurs and jet electrons are strongly perturbed. In the electron-positron jet simulation mixed kinetic instabilities occur at early times followed by a turbulence-like structure. Simulations using much larger (and longer) systems are further required in order to thoroughly investigate the evolution of global jets containing helical magnetic fields.



rate research

Read More

In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron$-$proton ($e^{-}-p^{+}$) and electron$-$positron ($e^{pm}$) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the $e^{-}-p^{+}$ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the $e^{pm}$ jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.
We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{pm}$) plasmas containing helical magnetic fields. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger systems to confirm these new findings.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
One of the key questions in the study of relativistic jets is how magnetic reconnection occurs and whether it can effectively accelerate electrons in the jet. We performed 3D particle-in-cell (PIC) simulations of a relativistic electron-proton jet of relatively large radius that carries a helical magnetic field. We focussed our investigation on the interaction between the jet and the ambient plasma and explore how the helical magnetic field affects the excitation of kinetic instabilities such as the Weibel instability (WI), the kinetic Kelvin-Helmholtz instability (kKHI), and the mushroom instability (MI). In our simulations these kinetic instabilities are indeed excited, and particles are accelerated. At the linear stage we observe recollimation shocks near the center of the jet. As the electron-proton jet evolves into the deep nonlinear stage, the helical magnetic field becomes untangled due to reconnection-like phenomena, and electrons are repeatedly accelerated as they encounter magnetic-reconnection events in the turbulent magnetic field.
Using the relativistic MHD code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dynamics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculate the synthetic synchrotron maps and radio light curves and analyse the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curves with radio flares observed from the blazar 3C 273 with OVRO and VLBA in the MOJAVE survey between 2008 and 2019. We find that, in a structured, over-pressured relativistic jet, the presence of the large-scale magnetic field structure changes the properties of the standing shock waves and leads to an opening of the jet. When crossing such standing shocks, moving shock waves accompanying overdensities injected in the base of the jet are causing very luminous radio flares. The observation of the temporal structure of these flares under different viewing angles probes the jet at different optical depths. At 1 GHz and for small angles, the self-absorption caused by the moving shock wave becomes more important and leads to a drop in the observed flux after it interacts with the brightest standing knot. A weak asymmetry is seen in the shape of the simulated flares, resulting from the remnant emission of the shocked standing shocks. The characteristics of the simulated flares and the correlation of peaks in the light curve with the crossing of moving and standing shocks favor this scenario as an explanation of the observed radio flares of 3C 273.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا