Do you want to publish a course? Click here

Rapid Particle Acceleration due to Recollimation Shocks and Turbulent Magnetic Fields in Injected Jets with Helical Magnetic Fields

80   0   0.0 ( 0 )
 Added by Kenichi Nishikawa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the key questions in the study of relativistic jets is how magnetic reconnection occurs and whether it can effectively accelerate electrons in the jet. We performed 3D particle-in-cell (PIC) simulations of a relativistic electron-proton jet of relatively large radius that carries a helical magnetic field. We focussed our investigation on the interaction between the jet and the ambient plasma and explore how the helical magnetic field affects the excitation of kinetic instabilities such as the Weibel instability (WI), the kinetic Kelvin-Helmholtz instability (kKHI), and the mushroom instability (MI). In our simulations these kinetic instabilities are indeed excited, and particles are accelerated. At the linear stage we observe recollimation shocks near the center of the jet. As the electron-proton jet evolves into the deep nonlinear stage, the helical magnetic field becomes untangled due to reconnection-like phenomena, and electrons are repeatedly accelerated as they encounter magnetic-reconnection events in the turbulent magnetic field.

rate research

Read More

We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{pm}$) plasmas containing helical magnetic fields. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger systems to confirm these new findings.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on simulations with a small system. We obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system generates a jitter/synchrotron spectrum.
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron$-$proton ($e^{-}-p^{+}$) and electron$-$positron ($e^{pm}$) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the $e^{-}-p^{+}$ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the $e^{pm}$ jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا