No Arabic abstract
We present Submillimeter Array (SMA) observations toward the high-mass star-forming region IRAS 18566+0408. Observations at 1.3 mm continuum and in several molecular line transitions were performed in the compact (2.4 angular resolution) and very-extended (~0.4 angular resolution) configurations. The continuum emission from the compact configuration shows a dust core of 150 Msun, while the very-extended configuration reveals a dense (2.6 x 10^7 cm^-3) and compact (~4,000 AU) condensation of 8 Msun. We detect 31 molecular transitions from 14 species including CO isotopologues, SO, CH3OH, OCS, and CH3CN. Using the different k-ladders of the CH3CN line, we derive a rotational temperature at the location of the continuum peak of 240 K. The 12CO(2-1), 13CO(2-1), and SO(6_5-5_4) lines reveal a molecular outflow at PA ~135^o centered at the continuum peak. The extended 12CO(2-1) emission has been recovered with the IRAM 30 m telescope observations. Using the combined data set, we derive an outflow mass of 16.8 Msun. The chemically rich spectrum and the high rotational temperature confirm that IRAS 18566+0408 is harboring a hot molecular core. We find no clear velocity gradient that could suggest the presence of a rotational disk-like structure, even at the high resolution observations obtained with the very-extended configuration.
The study of high-mass star formation objects demonstrates valuable details about the chemical composition and massive star formation process. We present the spectroscopic detection of the rotational molecular emission lines of complex nitrile species ethyl cyanide in the high mass star-forming region IRAS 18566+0408 using the Atacama Large Millimeter/Submillimeter Array (ALMA). We detected a total of thirteen rotational emission lines of ethyl cyanide including their different $^{13}C$ isotopologue between the frequency range of $ u$ = 86$-$111 GHz with ALMA band 3 observation. Using LTE model, the range of statistical column density of ethyl cyanide is found (3$-$4)$times$10$^{15}$ cm$^{-2}$ with rotational temperature $T_{rot}$ = 90 K. The abundance of ethyl cyanide in IRAS 18566+0408 relative to the H$_{2}$ is estimated between the range of (1.0$-$1.4)$times$10$^{-8}$ where $N$(H$_{2}$) = 2.9$times$10$^{23}$ cm$^{-2}$.
Haro 2 , a nearby dwarf starburst dwarf galaxy with strong Ly alpha emission, hosts a starburst that has created outflows and filaments. The clear evidence for galactic outflow makes it an ideal candidate for studying the effects of feedback on molecular gas in a dwarf galaxy. We observed CO(2-1) in Haro 2 at the Submillimeter Array in the compact and extended configurations, and have mapped the molecular emission with velocity resolution 4.1 km/s and spatial resolution 2.0x1.6. With this significant increase of resolution over previous measurements we see that the molecular gas comprises two components: bright clumps associated with the embedded star clusters of the starburst, and fainter extended emission east of the starburst region. The extended emission coincides with an X-ray bubble and has the kinematic signatures of a shell or bubble expanding with velocity +-35 km/s. We suggest that the starburst winds that created the X-Ray bubble have entrained molecular gas, and that the apparent velocity gradient across the photometric axis is an artifact caused by the outflow. The molecular and X-ray activity is on the east of the galaxy and the ionized outflow and optical filaments are west; their relationship is not clear.
Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels between 24 and 39; seventeen of them in the ground vibrational state $v$=0 (9 lines corresponding to the main C isotopologue and 8 lines corresponding to the $^{13}$C isotopologues), and fourteen in the lowest vibrationally excited state $v_7$=1. Using LTE-based population diagrams for the beam-diluted $v$=0 transitions, we determined $T_{rm exc}$=85$pm$4 K and $N$(HC$_3$N)=(6.9$pm$0.8)$times$10$^{14}$ cm$^{-2}$, while for the beam-diluted $v_7$=1 transitions we obtained $T_{rm exc}$=89$pm$10 K and $N$(HC$_3$N)=2$pm$1$times$10$^{15}$ cm$^{-2}$. Non-LTE calculations using H$_2$ collision rates indicate that the HC$_3$N emission is in good agreement with LTE-based results. From the non-LTE method we estimated $T_{rm kin}$ $simeq$90~K, $n$(H$_2$)$simeq$2$times$10$^7$~cm$^{-3}$ for a central core of 6 arcsec in size. A vibrational temperature in the range from 130~K to 145~K was also determined, values which are very likely lower limits. Our results suggest that rotational transitions are thermalized, while IR radiative pumping processes are probably more efficient than collisions in exciting the molecule to the vibrationally excited state $v_7$=1. Abundance ratios derived under LTE conditions for the $^{13}$C isotopologues suggest that the main formation pathway of HC$_3$N is ${rm C}_2{rm H}_2 + {rm CN} rightarrow {rm HC}_3{rm N} + {rm H}$.
We present sensitive high angular resolution ($sim$ 0.1$$ -- 0.3$$) continuum ALMA (The Atacama Large Millimeter/Submillimeter Array) observations of the archetypal hot core located in Orion-KL. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149 -- 658 GHz). Apart of the well-know millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA 1-3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 to 1.56, and brightness temperatures between 100 to 200 K at 658 GHz suggesting that we are seeing moderate optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favours the hypothesis that the hot molecular core in Orion-KL core is heated externally.
We present sensitive high angular resolution submillimeter and millimeter observations of torsionally/vibrationally highly excited lines of the CH$_3$OH, HC$_3$N, SO$_2$, and CH$_3$CN molecules and of the continuum emission at 870 and 1300 $mu$m from the Orion KL region, made with the Submillimeter Array (SMA). These observations plus recent SMA CO J=3-2 and J=2-1 imaging of the explosive flow originating in this region, which is related to the non-hierarchical disintegration of a massive young stellar system, suggest that the molecular Orion Hot Core is a pre-existing density enhancement heated from the outside by the explosive event -- unlike in other hot cores we do not find any self-luminous submillimeter, radio or infrared source embedded in the hot molecular gas. Indeed, we do not observe filamentary CO flow structures or fingers in the shadow of the hot core pointing away from the explosion center. The low-excitation CH$_3$CN emission shows the typical molecular heart-shaped structure, traditionally named the Hot Core, and is centered close to the dynamical origin of the explosion. The highest excitation CH$_3$CN lines are all arising from the northeast lobe of the heart-shaped structure, {it i. e.} from the densest and most highly obscured parts of the Extended Ridge. The torsionally excited CH$_3$OH and vibrationally excited HC$_3$N lines appear to form a shell around the strongest submillimeter continuum source. Surprisingly the kinematics of the Hot Core and Compact Ridge regions as traced by CH$_3$CN and HC$_3$N also reveal filament-like structures that emerge from the dynamical origin. All of these observations suggest the southeast and southwest sectors of the explosive flow to have impinged on a pre-existing very dense part of the Extended Ridge, thus creating the bright Orion KL Hot Core.