Do you want to publish a course? Click here

Orion KL: The hot core that is not a Hot Core

313   0   0.0 ( 0 )
 Added by Luis Zapata Dr.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present sensitive high angular resolution submillimeter and millimeter observations of torsionally/vibrationally highly excited lines of the CH$_3$OH, HC$_3$N, SO$_2$, and CH$_3$CN molecules and of the continuum emission at 870 and 1300 $mu$m from the Orion KL region, made with the Submillimeter Array (SMA). These observations plus recent SMA CO J=3-2 and J=2-1 imaging of the explosive flow originating in this region, which is related to the non-hierarchical disintegration of a massive young stellar system, suggest that the molecular Orion Hot Core is a pre-existing density enhancement heated from the outside by the explosive event -- unlike in other hot cores we do not find any self-luminous submillimeter, radio or infrared source embedded in the hot molecular gas. Indeed, we do not observe filamentary CO flow structures or fingers in the shadow of the hot core pointing away from the explosion center. The low-excitation CH$_3$CN emission shows the typical molecular heart-shaped structure, traditionally named the Hot Core, and is centered close to the dynamical origin of the explosion. The highest excitation CH$_3$CN lines are all arising from the northeast lobe of the heart-shaped structure, {it i. e.} from the densest and most highly obscured parts of the Extended Ridge. The torsionally excited CH$_3$OH and vibrationally excited HC$_3$N lines appear to form a shell around the strongest submillimeter continuum source. Surprisingly the kinematics of the Hot Core and Compact Ridge regions as traced by CH$_3$CN and HC$_3$N also reveal filament-like structures that emerge from the dynamical origin. All of these observations suggest the southeast and southwest sectors of the explosive flow to have impinged on a pre-existing very dense part of the Extended Ridge, thus creating the bright Orion KL Hot Core.



rate research

Read More

We present sensitive high angular resolution ($sim$ 0.1$$ -- 0.3$$) continuum ALMA (The Atacama Large Millimeter/Submillimeter Array) observations of the archetypal hot core located in Orion-KL. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149 -- 658 GHz). Apart of the well-know millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA 1-3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 to 1.56, and brightness temperatures between 100 to 200 K at 658 GHz suggesting that we are seeing moderate optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favours the hypothesis that the hot molecular core in Orion-KL core is heated externally.
Comparison of their chemical compositions shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH$_{2}$OH)$_{2}$, seems to depart from this correlation because it was not easily detected in the interstellar medium although it proved to be rather abundant with respect to other O-bearing species in comet Hale-Bopp. Ethylene glycol thus appears, together with the related molecules glycolaldehyde CH$_{2}$OHCHO and ethanol CH$_{3}$CH$_{2}$OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. We have detected the aGg conformer of ethylene glycol in Orion-KL. The emission is compact and peaks towards the Hot Core close to the main continuum peak, about 2 to the south-west; this distribution is notably different from other O-bearing species. Assuming optically thin lines and local thermodynamic equilibrium, we derive a rotational temperature of 145 K and a column density of 4.6 10$^{15}$ cm$^{-2}$. The limit on the column density of the gGg conformer is five times lower.
We present the first detection of interstellar acetone [(CH3)2CO] toward the high mass star forming region Orion-KL and the first detection of vibrationally excited (CH3)2CO in the ISM. Using the BIMA Array, 28 emission features that can be assigned to 54 acetone transitions were detected. Furthermore, 37 of these transitions have not been previously observed in the ISM. The observations also show that the acetone emission is concentrated toward the hot core region of Orion-KL, contrary to the distribution of other large oxygen bearing molecules. From our rotational-temperature diagram we find a beam averaged (CH3)2CO column density of (2.0(0.3)-8.0(1.2))x10^16 cm^-2 and a rotational temperature of 176(48)-194(66) K.
NGC 7129 FIRS 2 (hereafter FIRS 2) is an intermediate-mass (2 to 8 Msun) protostar located at a distance of 1250 pc. High spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218200 MHz to 221800 MHz carried out with the IRAM Plateau de Bure Interferometer. These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30m telescope. We used a Local Thermodynamic Equilibrium (LTE) single temperature code to model the whole dataset. The interferometric spectrum is crowded with a total of ~300 lines from which a few dozens remain unidentified yet. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN) and the aGg conformer of ethylene glycol (aGg-(CH2OH)_2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N and CH3CHO proves the existence of gas and dust at high temperatures. In fact, the gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS~2 and the Orion hot core. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse phase in the case of Orion) and/or different crossing time of the gas in the hot core can explain this behavior.
Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels between 24 and 39; seventeen of them in the ground vibrational state $v$=0 (9 lines corresponding to the main C isotopologue and 8 lines corresponding to the $^{13}$C isotopologues), and fourteen in the lowest vibrationally excited state $v_7$=1. Using LTE-based population diagrams for the beam-diluted $v$=0 transitions, we determined $T_{rm exc}$=85$pm$4 K and $N$(HC$_3$N)=(6.9$pm$0.8)$times$10$^{14}$ cm$^{-2}$, while for the beam-diluted $v_7$=1 transitions we obtained $T_{rm exc}$=89$pm$10 K and $N$(HC$_3$N)=2$pm$1$times$10$^{15}$ cm$^{-2}$. Non-LTE calculations using H$_2$ collision rates indicate that the HC$_3$N emission is in good agreement with LTE-based results. From the non-LTE method we estimated $T_{rm kin}$ $simeq$90~K, $n$(H$_2$)$simeq$2$times$10$^7$~cm$^{-3}$ for a central core of 6 arcsec in size. A vibrational temperature in the range from 130~K to 145~K was also determined, values which are very likely lower limits. Our results suggest that rotational transitions are thermalized, while IR radiative pumping processes are probably more efficient than collisions in exciting the molecule to the vibrationally excited state $v_7$=1. Abundance ratios derived under LTE conditions for the $^{13}$C isotopologues suggest that the main formation pathway of HC$_3$N is ${rm C}_2{rm H}_2 + {rm CN} rightarrow {rm HC}_3{rm N} + {rm H}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا