We propose a discretization of classical confocal coordinates. It is based on a novel characterization thereof as factorizable orthogonal coordinate systems. Our geometric discretization leads to factorizable discrete nets with a novel discrete analog of the orthogonality property. A discrete confocal coordinate system may be constructed geometrically via polarity with respect to a sequence of classical confocal quadrics. Various sequences correspond to various discrete parametrizations. The coordinate functions of discrete confocal quadrics are computed explicitly. The theory is illustrated with a variety of examples in two and three dimensions. These include confocal coordinate systems parametrized in terms of Jacobi elliptic functions. Connections with incircular (IC) nets and a generalized Euler-Poisson-Darboux system are established.
The Milnor Problem (modified) in the theory of group growth asks whether any finite presented group of vanishing algebraic entropy has at most polynomial growth. We show that a positive answer to the Milnor Problem (modified) is equivalent to the Nilpotency Conjecture in Riemannian geometry: given $n, d>0$, there exists a constant $epsilon(n,d)>0$ such that if a compact Riemannian $n$-manifold $M$ satisfies that Ricci curvature $op{Ric}_Mge -(n-1)$, diameter $dge op{diam}(M)$ and volume entropy $h(M)<epsilon(n,d)$, then the fundamental group $pi_1(M)$ is virtually nilpotent. We will verify the Nilpotency Conjecture in some cases, and we will verify the vanishing gap phenomena for more cases i.e., if $h(M)<epsilon(n,d)$, then $h(M)=0$.
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular, two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained.
In this paper we consider the numerical approximation of systems of Boussinesq-type to model surface wave propagation. Some theoretical properties of these systems (multi-symplectic and Hamiltonian formulations, well-posedness and existence of solitary-wave solutions) were previously analyzed by the authors in Part I. As a second part of the study, considered here is the construction of geometric schemes for the numerical integration. By using the method of lines, the geometric properties, based on the multi-symplectic and Hamiltonian structures, of different strategies for the spatial and time discretizations are discussed and illustrated.
We obtain new topological information about the local structure of collapsing under a lower sectional curvature bound. As an application we prove a new sphere theorem and obtain a partial result towards the conjecture that not every Alexandrov space can be obtained as a limit of a sequence of Riemannian manifolds with sectional curvature bounded from below.
Given a G-structure with connection satisfying a regularity assumption we associate to it a classifying Lie algebroid. This algebroid contains all the information about the equivalence problem and is an example of a G-structure Lie algebroid. We discuss the properties of this algebroid, the G-structure groupoids integrating it and the relationship with Cartans realization problem.
Alexander I. Bobenko
,Wolfgang K. Schief
,Yuri B. Suris
.
(2017)
.
"On a discretization of confocal quadrics. II. A geometric approach to general parametrizations"
.
Yuri B. Suris
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا