No Arabic abstract
Motivated by a freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an extensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky 1992). The experimental realization of atom-thin graphene sheets has driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic membrane embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: d --> infinity, D --> 4, and D=d. Focusing on the critical flat phase, for a homogeneous two-dimensional membrane embedded in three dimensions, we predict its universal length-scale dependent roughness, elastic moduli exponents, and a universal negative Poisson ratio of -1/3. We also extend these results to short- and long-range correlated random heterogeneity, predicting a variety of glassy wrinkled membrane states. Finally, we also predict and analyze a continuous crumpling transition in a phantom elastic sheet. We hope that this detailed presentation of the SCSA theory will be useful for further theoretical developments and corresponding experimental investigations on freely suspended graphene.
We study the shape, elasticity and fluctuations of the recently predicted (cond-mat/9510172) and subsequently observed (in numerical simulations) (cond-mat/9705059) tubule phase of anisotropic membranes, as well as the phase transitions into and out of it. This novel phase lies between the previously predicted flat and crumpled phases, both in temperature and in its physical properties: it is crumpled in one direction, and extended in the other. Its shape and elastic properties are characterized by a radius of gyration exponent $ u$ and an anisotropy exponent $z$. We derive scaling laws for the radius of gyration $R_G(L_perp,L_y)$ (i.e. the average thickness) of the tubule about a spontaneously selected straight axis and for the tubule undulations $h_{rms}(L_perp,L_y)$ transverse to its average extension. For phantom (i.e. non-self-avoiding) membranes, we predict $ u=1/4$, $z=1/2$ and $eta_kappa=0$, exactly, in excellent agreement with simulations. For membranes embedded in the space of dimension $d<11$, self-avoidance greatly swells the tubule and suppresses its wild transverse undulations, changing its shape exponents $ u$ and $z$. We give detailed scaling results for the shape of the tubule of an arbitrary aspect ratio and compute a variety of correlation functions, as well as the anomalous elasticity of the tubules. Finally we present a scaling theory for the shape of the membrane and its specific heat near the continuous transitions into and out of the tubule phase and perform detailed renormalization group calculations for the crumpled-to-tubule transition for phantom membranes.
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterize their behaviour at the particle scale. While 2D observations are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the materials microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems
Random (disordered) components in the surface anchoring of the smectic-A liquid crystalline film in general modify the thermal pseudo-Casimir interaction. Anchoring disorder of the quenched type is in general decoupled from the thermal pseudo-Casimir force and gives rise to an additional disorder-generated interaction, in distinction to the annealed disorder, whose effect on the pseudo-Casimir force is non-additive. We consider the effects of the surface anchoring disorder by assuming that one of the substrates of the film is contaminated by a disorder source, resulting in a Gaussian-weighted distribution of the preferred molecular anchoring orientation (easy axes) on that substrate, having a finite mean and variance or, more generally, a homogeneous in-plane, two-point correlation function. We show that the presence of disorder, either of the quenched or annealed type, leads to a significant reduction in the magnitude of the net thermal fluctuation force between the confining substrates of the film. In the quenched case this is a direct consequence of an additive free energy dependent on the variance of the disorder, while in the annealed case, the suppression of the interaction force can be understood based on a disorder-renormalized, effective anchoring strength.
We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develops in the defect band and survives defect disorder for $e$-$e$ interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold, otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter $k$ determines the exponent of the power-law dependence of the density of states at the chemical potential ($k-1$) and hence distinguishes between the soft gap ($kgeq2$) and the pseudogap ($k<2$) regimes. Both $k$ and the effective gap scale with the hopping integral and the $e$-$e$ interaction in a wide doping range. The motion of doped holes is confined by the closest defect potential and the overall spin-orbital structure. Such a generic behavior leads to complex non-hydrogen-like defect states that tend to preserve the underlying $C$-type spin and $G$-type orbital order and can be detected and analyzed via scanning tunneling microscopy.
The simultaneous interplay of strong electron-electron correlations, topological zero-energy states, and disorder is yet an unexplored territory but of immense interest due to their inevitable presence in many materials. Copper oxide high-temperature superconductors (cuprates) with pair breaking edges host a flat band of topological zero-energy states, making them an ideal playground where strong correlations, topology, and disorder are strongly intertwined. Here we show that this interplay in cuprates generates a new phase of matter: a fully gapped phase crystal state that breaks both translational and time reversal invariance, characterized by a modulation of the $d$-wave superconducting phase co-existing with a modulating extended $s$-wave superconducting order. In contrast to conventional wisdom, we find that this phase crystal state is remarkably robust to omnipresent disorder, but only in the presence of strong correlations, thus giving a clear route to its experimental realization.