Do you want to publish a course? Click here

Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center

126   0   0.0 ( 0 )
 Added by Yilei Tang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We apply the averaging theory of high order for computing the limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. These discontinuous piecewise differential systems are formed by two either quadratic, or cubic polynomial differential systems separated by a straight line. We compute the maximum number of limit cycles of these discontinuous piecewise polynomial perturbations of the linear center, which can be obtained by using the averaging theory of order $n$ for $n=1,2,3,4,5$. Of course these limit cycles bifurcate from the periodic orbits of the linear center. As it was expected, using the averaging theory of the same order, the results show that the discontinuous quadratic and cubic polynomial perturbations of the linear center have more limit cycles than the ones found for continuous and discontinuous linear perturbations. Moreover we provide sufficient and necessary conditions for the existence of a center or a focus at infinity if the discontinuous piecewise perturbations of the linear center are general quadratic polynomials or cubic quasi--homogenous polynomials.



rate research

Read More

In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $epsilonrightarrow 0$. In slow-fast systems, the slow divergence-integral is an integral of the divergence along a canard cycle with respect to the slow time and it has proven very useful in obtaining good lower and upper bounds of limit cycles in planar polynomial systems. In this paper, our slow divergence-integral is based upon integration along a generalized canard cycle for a piecewise smooth two-fold bifurcation (of type visible-invisible called $VI_3$). We use this framework to show that the number of limit cycles in regularized piecewise smooth polynomial systems is unbounded.
196 - Jiaxin Wang , Liqin Zhao 2021
In this paper, we study the bifurcate of limit cycles for Bogdanov-Takens system($dot{x}=y$, $dot{y}=-x+x^{2}$) under perturbations of piecewise smooth polynomials of degree $2$ and $n$ respectively. We bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles with switching curve $x=y^{2m}$($m$ is a positive integral) are $(39m+36)n+77m+21(mgeq 2)$ and $50n+52(m=1)$ (taking into account the multiplicity). The upper bounds number of limit cycles with switching lines $x=0$ and $y=0$ are 11 (taking into account the multiplicity) and it can be reached.
We obtain condition for existence of a center for a cubic planar differential system, which can be considered as a polynomial subfamily of the generalized Riccati system. We also investigate bifurcations of small limit cycles from the components of the center variety of the system.
In the present paper, we study the number of zeros of the first order Melnikov function for piecewise smooth polynomial differential system, to estimate the number of limit cycles bifurcated from the period annulus of quadratic isochronous centers, when they are perturbed inside the class of all piecewise smooth polynomial differential systems of degree $n$ with the straight line of discontinuity $x=0$. An explicit and fairly accurate upper bound for the number of zeros of the first order Melnikov functions with respect to quadratic isochronous centers $S_1, S_2$ and $S_3$ is provided. For quadratic isochronous center $S_4$, we give a rough estimate for the number of zeros of the first order Melnikov function due to its complexity. Furthermore, we improve the upper bound associated with $S_4$, from $14n+11$ in cite{LLLZ}, $12n-1$ in cite{SZ} to $[(5n-5)/2]$, when it is perturbed inside all smooth polynomial differential systems of degree $n$. Besides, some evidence on the equivalence of the first order Melnikov function and the first order Averaged function for piecewise smooth polynomial differential systems is found.
By applying a singular perturbation approach, canard limit cycles exhibited by a general family of singularly perturbed planar piecewise linear (PWL) differential systems are analyzed. The performed study involves both hyperbolic and non-hyperbolic canard limit cycles appearing after both a supercritical and a subcritical Hopf bifurcation. The obtained results are completely comparable with those obtained for smooth vector fields. In some sense, the manuscript can be understood as an extension towards the PWL framework of the results obtained for smooth systems by Krupa and Szmolyan [18]. In addition, some novel slow-fast behaviors are obtained. In particular, in the supercritical case, and under suitable conditions, it is proved that the limit cycles are organized along a curve exhibiting two folds. Each of these folds corresponds to a saddle-node bifurcation of canard limit cycles, one involving headless canard cycles, whereas the other involving canard cycles with head. This configuration allows the coexistence of three canard limit cycles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا