Do you want to publish a course? Click here

On the number of limit cycles for Bogdanov-Takens system under perturbations of piecewise smooth polynomials

197   0   0.0 ( 0 )
 Added by Wang Jiaxin
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the bifurcate of limit cycles for Bogdanov-Takens system($dot{x}=y$, $dot{y}=-x+x^{2}$) under perturbations of piecewise smooth polynomials of degree $2$ and $n$ respectively. We bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles with switching curve $x=y^{2m}$($m$ is a positive integral) are $(39m+36)n+77m+21(mgeq 2)$ and $50n+52(m=1)$ (taking into account the multiplicity). The upper bounds number of limit cycles with switching lines $x=0$ and $y=0$ are 11 (taking into account the multiplicity) and it can be reached.



rate research

Read More

In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $epsilonrightarrow 0$. In slow-fast systems, the slow divergence-integral is an integral of the divergence along a canard cycle with respect to the slow time and it has proven very useful in obtaining good lower and upper bounds of limit cycles in planar polynomial systems. In this paper, our slow divergence-integral is based upon integration along a generalized canard cycle for a piecewise smooth two-fold bifurcation (of type visible-invisible called $VI_3$). We use this framework to show that the number of limit cycles in regularized piecewise smooth polynomial systems is unbounded.
In this article we study the existence of limit cycles in families of piecewise smooth differential equations having the unit circle as discontinuity region. We consider families presenting singularities of center or saddle type, visible or invisible, as well as the case without singularities. We establish an upper bound for the number of limit cycles and give examples showing that the maximum number of limit cycles can be reached. We also discuss the existence of homoclinic cycles for such differential equations in the saddle-center case.
125 - Jaume Llibre , Yilei Tang 2017
We apply the averaging theory of high order for computing the limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. These discontinuous piecewise differential systems are formed by two either quadratic, or cubic polynomial differential systems separated by a straight line. We compute the maximum number of limit cycles of these discontinuous piecewise polynomial perturbations of the linear center, which can be obtained by using the averaging theory of order $n$ for $n=1,2,3,4,5$. Of course these limit cycles bifurcate from the periodic orbits of the linear center. As it was expected, using the averaging theory of the same order, the results show that the discontinuous quadratic and cubic polynomial perturbations of the linear center have more limit cycles than the ones found for continuous and discontinuous linear perturbations. Moreover we provide sufficient and necessary conditions for the existence of a center or a focus at infinity if the discontinuous piecewise perturbations of the linear center are general quadratic polynomials or cubic quasi--homogenous polynomials.
This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper by proving that the triple multiplicity of the zero eigenvalue gives a Jordan chain of length three. Moreover, we simplify the center manifold reduction and computation of the normal form coefficients by using the Evans function for the eigenvalues. Finally, we prove the unfolding of a Bogdanov-Takens bifurcation with symmetry in the model. This leads to stable periodic front motion, including stable traveling breathers, and these results are illustrated by numerical computations.
291 - Roman M. Fedorov 2004
The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilberts 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. This paper is the continuation of the authors paper in [Mosc. Math. J. 1 (2001), no. 4] where the lower bound of the form 2^{cn^2} has been obtained. Here we obtain the upper bound of the same form. We also associate an equipped planar graph to every planar polynomial vector field, this graph is a complete invariant for orbital topological classification of such fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا