Do you want to publish a course? Click here

Saddle-node canard cycles in planar piecewise linear differential systems

108   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

By applying a singular perturbation approach, canard limit cycles exhibited by a general family of singularly perturbed planar piecewise linear (PWL) differential systems are analyzed. The performed study involves both hyperbolic and non-hyperbolic canard limit cycles appearing after both a supercritical and a subcritical Hopf bifurcation. The obtained results are completely comparable with those obtained for smooth vector fields. In some sense, the manuscript can be understood as an extension towards the PWL framework of the results obtained for smooth systems by Krupa and Szmolyan [18]. In addition, some novel slow-fast behaviors are obtained. In particular, in the supercritical case, and under suitable conditions, it is proved that the limit cycles are organized along a curve exhibiting two folds. Each of these folds corresponds to a saddle-node bifurcation of canard limit cycles, one involving headless canard cycles, whereas the other involving canard cycles with head. This configuration allows the coexistence of three canard limit cycles.



rate research

Read More

86 - Yilei Tang 2017
In this paper we research global dynamics and bifurcations of planar piecewise smooth quadratic quasi--homogeneous but non-homogeneous polynomial differential systems. We present sufficient and necessary conditions for the existence of a center in piecewise smooth quadratic quasi--homogeneous systems. Moreover, the center is global and non-isochronous if it exists, which cannot appear in smooth quadratic quasi-homogeneous systems. Then the global structures of piecewise smooth quadratic quasi--homogeneous but non-homogeneous systems are studied. Finally we investigate limit cycle bifurcations of the piecewise smooth quadratic quasi-homogeneous center and give the maximal number of limit cycles bifurcating from the periodic orbits of the center by applying the Melnikov method for piecewise smooth near-Hamiltonian systems.
291 - Roman M. Fedorov 2004
The paper deals with planar polynomial vector fields. We aim to estimate the number of orbital topological equivalence classes for the fields of degree n. An evident obstacle for this is the second part of Hilberts 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. This paper is the continuation of the authors paper in [Mosc. Math. J. 1 (2001), no. 4] where the lower bound of the form 2^{cn^2} has been obtained. Here we obtain the upper bound of the same form. We also associate an equipped planar graph to every planar polynomial vector field, this graph is a complete invariant for orbital topological classification of such fields.
In this article we study the existence of limit cycles in families of piecewise smooth differential equations having the unit circle as discontinuity region. We consider families presenting singularities of center or saddle type, visible or invisible, as well as the case without singularities. We establish an upper bound for the number of limit cycles and give examples showing that the maximum number of limit cycles can be reached. We also discuss the existence of homoclinic cycles for such differential equations in the saddle-center case.
In this paper, we extend the slow divergence-integral from slow-fast systems, due to De Maesschalck, Dumortier and Roussarie, to smooth systems that limit onto piecewise smooth ones as $epsilonrightarrow 0$. In slow-fast systems, the slow divergence-integral is an integral of the divergence along a canard cycle with respect to the slow time and it has proven very useful in obtaining good lower and upper bounds of limit cycles in planar polynomial systems. In this paper, our slow divergence-integral is based upon integration along a generalized canard cycle for a piecewise smooth two-fold bifurcation (of type visible-invisible called $VI_3$). We use this framework to show that the number of limit cycles in regularized piecewise smooth polynomial systems is unbounded.
125 - Jaume Llibre , Yilei Tang 2017
We apply the averaging theory of high order for computing the limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. These discontinuous piecewise differential systems are formed by two either quadratic, or cubic polynomial differential systems separated by a straight line. We compute the maximum number of limit cycles of these discontinuous piecewise polynomial perturbations of the linear center, which can be obtained by using the averaging theory of order $n$ for $n=1,2,3,4,5$. Of course these limit cycles bifurcate from the periodic orbits of the linear center. As it was expected, using the averaging theory of the same order, the results show that the discontinuous quadratic and cubic polynomial perturbations of the linear center have more limit cycles than the ones found for continuous and discontinuous linear perturbations. Moreover we provide sufficient and necessary conditions for the existence of a center or a focus at infinity if the discontinuous piecewise perturbations of the linear center are general quadratic polynomials or cubic quasi--homogenous polynomials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا